next up previous contents
Next: The and Invariants Up: Theoretical Background Previous: The Tetrad   Contents

The Weyl Components

The $\Psi$'s are defined as components of the Weyl tensor $C_{abcd}$ which in the vacuum case (assumed by PsiKadelia) is identical to the antisymmetrised Riemann tensor $R_{abcd}$.
$\displaystyle \Psi_0$ $\textstyle =$ $\displaystyle C_{abcd}\,l^a\,m^b\,l^c\,m^d$  
$\displaystyle \Psi_1$ $\textstyle =$ $\displaystyle C_{abcd}\,l^a\,n^b\,l^c\,m^d$  
$\displaystyle \Psi_2$ $\textstyle =$ $\displaystyle C_{abcd}\,l^a\,n^b\,m^c\,\bar m^d$  
$\displaystyle \Psi_3$ $\textstyle =$ $\displaystyle C_{abcd}\,n^a\,l^b\,n^c\,\bar m^d$  
$\displaystyle \Psi_4$ $\textstyle =$ $\displaystyle C_{abcd}\,n^a\,\bar m^b\,n^c\,\bar m^d$  

If the tetrad has the right fall-off condition near infinity (the ``peeling property''), then the Weyl scalars $\Psi$ have the following meaning:

Scalar Falloff Physics
$\Psi_0$ $1/r$ outgoing gravitational (transverse) radiation
$\Psi_1$ $1/r^2$ outgoing gauge (longitudinal) radiation
$\Psi_2$ $1/r^3$ static gravitational (``Coulomb'') field
$\Psi_3$ $1/r^4$ ingoing gauge (longitudinal) radiation
$\Psi_4$ $1/r^5$ ingoing gravitational (transverse) radiation

Note: This is a different convention that usually chosen. Usually, the meanings of $\Psi_0$ and $\Psi_4$, and of $\Psi_1$ and $\Psi_3$ are exchanged. This difference comes essentially from the choice of the tetrad vectors $l^a$ and $n^a$; the choice above has $l^a$ pointing inwards and $n^a$ pointing outwards, which exchanges the notion of ``outgoing'' and ``ingoing''.

With a tetrad of the form (D18.1), these components can be expressed directly in terms of spatial quantities.

$\displaystyle \Psi_0$ $\textstyle =$ $\displaystyle C_{ab}\,m^a\,m^b$  
$\displaystyle \Psi_1$ $\textstyle =$ $\displaystyle \frac{1}{\sqrt2}C_{ab}\,m^a\,\hat{v}_{\scriptscriptstyle(1)}{}^b$  
$\displaystyle \Psi_2$ $\textstyle =$ $\displaystyle \frac{1}{2}C_{ab}\,\hat{v}_{\scriptscriptstyle(1)}{}^a\,\hat{v}_{\scriptscriptstyle(1)}{}^b$  
$\displaystyle \Psi_3$ $\textstyle =$ $\displaystyle \frac{-1}{\sqrt2}C_{ab}\,\bar m^a\,\hat{v}_{\scriptscriptstyle(1)}{}^b$  
$\displaystyle \Psi_4$ $\textstyle =$ $\displaystyle C_{ab}\,\bar m^a\,\bar m^b$  

where $m^a$ is as defined above. $C_{ab}$ is the symmetric, trace-free, complex-valued tensor
\begin{displaymath}
C_{ab}=R_{ab}-K\,K_{ab}+K_a^{\,c}\,K_{cb}-i\epsilon_a^{\,cd}\,\nabla_d\,K_{bc}
\nonumber
\end{displaymath}  

given in terms of the Ricci curvature $R_{ab}$ of the spatial metric and the extrinsic curvature $K_{ab}$.


next up previous contents
Next: The and Invariants Up: Theoretical Background Previous: The Tetrad   Contents