next up previous contents
Next: Usage Up: Theoretical Background Previous: The Weyl Components   Contents

The $I$ and $J$ Invariants

These are true invariants which do not depend on the choice of coordinates or the choice of tetrad, but PsiKadelia computes them via the $\Psi$'s:
$\displaystyle I$ $\textstyle =$ $\displaystyle \frac{1}{2}\left(2\,\Psi_0\,\Psi_4-8\,\Psi_1\,\Psi_3+6\,{\Psi_2}^2\right)$  
$\displaystyle J$ $\textstyle =$ $\displaystyle \det\left\vert
\begin{array}{lcr}
\Psi_0 & \Psi_1 & \Psi_2 \\
\Psi_1 & \Psi_2 & \Psi_3 \\
\Psi_2 & \Psi_3 & \Psi_4
\end{array}\right\vert.$