next up previous contents
Next: Numerical Implementation Up: Physical System Previous: Physical System   Contents

Wave Forms

Assume a spacetime $g_{\alpha\beta}$ which can be written as a Schwarzschild background $g_{\alpha\beta}^{Schwarz}$ with perturbations $h_{\alpha\beta}$:

\begin{displaymath}
g_{\alpha\beta} = g^{Schwarz}_{\alpha\beta} + h_{\alpha\beta}
\end{displaymath} (part311)

with
\begin{displaymath}
\{g^{Schwarz}_{\alpha\beta}\}(t,r,\theta,\phi) =
\left( \be...
...r^2 \sin^2\theta
\end{array}\right)
\qquad
S(r)=1-\frac{2M}{r}
\end{displaymath} (part312)

The 3-metric perturbations $\gamma_{ij}$ can be decomposed using tensor harmonics into $\gamma_{ij}^{lm}(t,r)$ where

\begin{displaymath}
\gamma_{ij}(t,r,\theta,\phi)=\sum_{l=0}^\infty \sum_{m=-l}^l
\gamma_{ij}^{lm}(t,r)
\end{displaymath}

and

\begin{displaymath}
\gamma_{ij}(t,r,\theta ,\phi ) = \sum_{k=0}^6 p_k(t,r) {\bf V}_k(\theta ,\phi )
\end{displaymath}

where $\{{\bf V}_k\}$ is some basis for tensors on a 2-sphere in 3-D Euclidean space. Working with the Regge-Wheeler basis (see Section D11.7) the 3-metric is then expanded in terms of the (six) standard Regge-Wheeler functions $\{c_1^{\times lm}, c_2^{\times lm},
h_1^{+lm}, H_2^{+lm}, K^{+lm},
G^{+lm}\}$ [26], [23]. Where each of the functions is either odd ($\times$) or even ($+$) parity. The decomposition is then written
$\displaystyle \gamma_{ij}^{lm}$ $\textstyle =$ $\displaystyle c_1^{\times lm}(\hat{e}_1)_{ij}^{lm}
+ c_2^{\times lm}(\hat{e}_2)_{ij}^{lm}$  
  $\textstyle +$ $\displaystyle h_1^{+lm}(\hat{f}_1)_{ij}^{lm}
+ A^2 H_2^{+lm}(\hat{f}_2)_{ij}^{lm}
+ R^2 K^{+lm}(\hat{f}_3)_{ij}^{lm}
+ R^2 G^{+lm}(\hat{f}_4)_{ij}^{lm}$ (part313)

which we can write in an expanded form as
$\displaystyle \gamma_{rr}^{lm}$ $\textstyle =$ $\displaystyle A^2 H_2^{+lm} Y_{lm}$ (part314)
$\displaystyle \gamma_{r\theta }^{lm}$ $\textstyle =$ $\displaystyle - c_1^{\times lm} \frac{1}{\sin\theta } Y_{lm,\phi}+h_1^{+lm}Y_{lm,\theta}$ (part315)
$\displaystyle \gamma_{r\phi }^{lm}$ $\textstyle =$ $\displaystyle c_1^{\times lm} \sin\theta Y_{lm,\theta}+ h_1^{+lm}Y_{lm,\phi}$ (part316)
$\displaystyle \gamma_{\theta \theta }^{lm}$ $\textstyle =$ $\displaystyle c_2^{\times lm}\frac{1}{\sin\theta }(Y_{lm,\theta\phi}-\cot\theta Y_{lm,\phi})
+ R^2 K^{+lm}Y_{lm}+ R^2 G^{+lm} Y_{lm,\theta\theta}$ (part317)
$\displaystyle \gamma_{\theta \phi }^{lm}$ $\textstyle =$ $\displaystyle -c_2^{\times lm}\sin\theta \frac{1}{2}
\left(
Y_{lm,\theta\theta}...
...n^2\theta}Y_{lm}\right)
+ R^2 G^{+lm}(Y_{lm,\theta\phi}-\cot\theta Y_{lm,\phi})$ (part318)
$\displaystyle \gamma_{\phi \phi }^{lm}$ $\textstyle =$ $\displaystyle -\sin\theta c_2^{\times lm} (Y_{lm,\theta\phi}- \cot\theta Y_{lm,...
...theta Y_{lm}
+R^2 G^{+lm} (Y_{lm,\phi\phi}+\sin\theta \cos\theta Y_{lm,\theta})$ (part319)

A similar decomposition allows the four gauge components of the 4-metric to be written in terms of three even-parity variables $\{H_0,H_1,h_0\}$ and the one odd-parity variable $\{c_0\}$
$\displaystyle g_{tt}^{lm}$ $\textstyle =$ $\displaystyle N^2 H_0^{+lm} Y_{lm}$ (part3110)
$\displaystyle g_{tr}^{lm}$ $\textstyle =$ $\displaystyle H_1^{+lm} Y_{lm}$ (part3111)
$\displaystyle g_{t\theta }^{lm}$ $\textstyle =$ $\displaystyle h_0^{+lm} Y_{lm,\theta}- c_0^{\times lm}\frac{1}{\sin\theta }Y_{lm,\phi}$ (part3112)
$\displaystyle g_{t\phi }^{lm}$ $\textstyle =$ $\displaystyle h_0^{+lm} Y_{lm,\phi}+ c_0^{\times lm} \sin\theta Y_{lm,\theta}$ (part3113)

Also from $g_{tt}=-\alpha^2+\beta_i\beta^i$ we have
\begin{displaymath}
\alpha^{lm} = -\frac{1}{2}NH_0^{+lm}Y_{lm}
\end{displaymath} (part3114)

It is useful to also write this with the perturbation split into even and odd parity parts:

\begin{displaymath}
g_{\alpha\beta} = {g}^{background}_{\alpha\beta} +
\sum_{l,m} g^{lm,odd}_{\alpha\beta}
+\sum_{l,m} g^{lm,even}_{\alpha\beta}
\end{displaymath}

where (dropping some superscripts)

\begin{eqnarray*}
\{g_{\alpha\beta}^{odd}\}
&=&
\left(
\begin{array}{cccc}
0 & ...
...phi\phi}+\sin\theta \cos\theta Y_{lm,\theta})
\end{array}\right)
\end{eqnarray*}

Now, for such a Schwarzschild background we can define two (and only two) unconstrained gauge invariant quantities $Q^{\times}_{lm}=Q^{\times}_{lm}(c_1^{\times lm},c_2^{\times lm})$ and $Q^{+}_{lm}=Q^{+}_{lm}(K^{+ lm},G^{+ lm},H_2^{+lm},h_1^{+lm})$, which from [10] are

$\displaystyle Q^{\times}_{lm}$ $\textstyle =$ $\displaystyle \sqrt{\frac{2(l+2)!}{(l-2)!}}\left[c_1^{\times lm}
+ \frac{1}{2}\...
...rtial_r c_2^{\times lm} - \frac{2}{r}
c_2^{\times lm}\right)\right] \frac{S}{r}$ (part3115)
$\displaystyle Q^{+}_{lm}$ $\textstyle =$ $\displaystyle \frac{1}{\Lambda}\sqrt{\frac{2(l-1)(l+2)}{l(l+1)}}
(4rS^2 k_2+l(l+1)r k_1)$ (part3116)
  $\textstyle \equiv$ $\displaystyle \frac{1}{\Lambda}\sqrt{\frac{2(l-1)(l+2)}{l(l+1)}}
\left(l(l+1)S(...
...^{+lm}-2h_1^{+lm})+
2rS(H_2^{+lm}-r\partial_r K^{+lm})+\Lambda r K^{+lm}\right)$ (part3117)

where
$\displaystyle k_1$ $\textstyle =$ $\displaystyle K^{+lm} + \frac{S}{r}(r^2\partial_r G^{+lm} - 2h^{+lm}_1)$ (part3118)
$\displaystyle k_2$ $\textstyle =$ $\displaystyle \frac{1}{2S}
\left[H^{+lm}_2-r\partial_r k_1-\left(1-\frac{M}{rS}...
...1 + S^{1/2}\partial_r
(r^2 S^{1/2} \partial_r G^{+lm}-2S^{1/2}h_1^{+lm})\right]$ (part3119)
  $\textstyle \equiv$ $\displaystyle \frac{1}{2S}\left[H_2-rK_{,r}-\frac{r-3M}{r-2M}K\right]$ (part3120)

NOTE: These quantities compare with those in Moncrief [23] by

\begin{eqnarray*}
\mbox{Moncriefs odd parity Q: }\qquad Q^\times_{lm} &=&
\sqrt...
...ity Q: } \qquad Q^+_{lm} &=&
\sqrt{\frac{2(l-1)(l+2)}{l(l+1)}}Q
\end{eqnarray*}

Note that these quantities only depend on the purely spatial Regge-Wheeler functions, and not the gauge parts. (In the Regge-Wheeler and Zerilli gauges, these are just respectively (up to a rescaling) the Regge-Wheeler and Zerilli functions). These quantities satisfy the wave equations

\begin{eqnarray*}
&&(\partial^2_t-\partial^2_{r^*})Q^\times_{lm}+S\left[\frac{l...
...t)
\right)+\frac{l(l-1)(l+1)(l+2)}{r^2\Lambda}\right]Q^+_{lm}=0
\end{eqnarray*}

where

\begin{eqnarray*}
\Lambda &=& (l-1)(l+2)+6M/r \\
r^* &=& r+2M\ln(r/2M-1)
\end{eqnarray*}


next up previous contents
Next: Numerical Implementation Up: Physical System Previous: Physical System   Contents