Next: About this document ...
Up: ThornGuideStable
Previous: Storage
Contents
-
- 1
-
http://www.cactuscode.org/VizTools/xgraph.html, http://jean-luc.aei.mpg.de/Codes/xgraph/
- 2
-
http://www.cactuscode.org/VizTools/Gnuplot.html, http://www.gnuplot.info
- 3
-
J. Thornburg.
Numerical Relativity in Black Hole Spacetimes.
Unpublished thesis, University of British Columbia.
1993.
Available from .
- 4
-
J. Thornburg.
A 3+1 Computational Scheme for Dynamic Spherically
Symmetric Black Hole Spacetimes - II: Time Evolution.
Preprint gr-qc/9906022, submitted to Phys. Rev.
D.
- 5
-
C. Shu.
High Order ENO and WENO Schemes for
Computational Fluid Dynamics.
In T. J. Barth and H. Deconinck, editors High-Order
Methods for Computational Physics. Springer, 1999.
A related online version can be found under Essentially
Non-Oscillatory and Weighted Essentially Non-Oscillatory
Schemes for Hyperbolic Conservation Laws at http://www.icase.edu/library/reports/rdp/97/97-65RDP.tex.refer.html.
- 6
-
D. W. Neilsen and M. W. Choptuik.
Ultrarelativistic fluid dynamics.
Class. Quantum Grav., 17:733-759, 2000.
- 7
-
J. York, in Sources of Gravitational Radiation, edited by L. Smarr
(Cambridge University Press, Cambridge, England, 1979).
- 8
- Abrahams A.M. & Cook G.B.
``Collisions of boosted black holes:
Perturbation theory predictions of
gravitational radiation''
Phys. Rev. D
50
R2364-R2367
(1994).
- 9
- Abrahams A.M., Shapiro S.L. & Teukolsky S.A.
``Calculation of gravitational wave forms from
black hole collisions and disk collapse: Applying
perturbation theory to numerical spacetimes''
Phys. Rev. D.
51
4295
(1995).
- 10
- Abrahams A.M. & Price R.H.
``Applying black hole perturbation
theory to numerically generated spacetimes''
Phys. Rev. D.
53
1963
(1996).
- 11
- Abrahams A.M. & Price R.H.
``Black-hole collisions from Brill-Lindquist
initial data: Predictions of perturbation theory''
Phys. Rev. D.
53
1972
(1996).
- 12
- Abramowitz, M. & Stegun A.
``Pocket Book of Mathematical Functions
(Abridged Handbook of Mathematical Functions'',
Verlag Harri Deutsch
(1984).
- 13
- Andrade Z., & Price R.H.
``Head-on collisions of unequal mass black holes:
Close-limit predictions'',
preprint
(1996).
- 14
- Anninos P., Price R.H., Pullin J., Seidel E.,
and Suen W-M.
``Head-on collision of two black holes:
Comparison of different approaches''
Phys. Rev. D.
52
4462
(1995).
- 15
- Arfken, G.
``Mathematical Methods for Physicists'',
Academic Press
(1985).
- 16
- Baker J., Abrahams A., Anninos P., Brant S.,
Price R., Pullin J. & Seidel E.
``The collision of boosted black holes''
(preprint)
(1996).
- 17
- Baker J. & Li C.B.
``The two-phase approximation for black hole
collisions: Is it robust''
preprint (gr-qc/9701035),
(1997).
- 18
- Brandt S.R. & Seidel E.
``The evolution of distorted rotating black holes III:
Initial data''
(preprint)
(1996).
- 19
- Cunningham C.T., Price R.H., Moncrief V.,
``Radiation from collapsing
relativistic stars.
I. Linearized Odd-Parity Radiation''
Ap. J.
224
543-667
(1978).
- 20
- Cunningham C.T., Price R.H., Moncrief V.,
``Radiation from collapsing
relativistic stars.
I. Linearized Even-Parity Radiation''
Ap. J.
230
870-892
(1979).
- 21
- Landau L.D. & Lifschitz E.M.,
``The Classical Theory of Fields''
(4th Edition),
Pergamon Press
(1980).
- 22
- Mathews J. ``'',
J. Soc. Ind. Appl. Math.
10
768
(1962).
- 23
- Moncrief V. ``Gravitational perturbations of spherically
symmetric systems. I. The exterior problem''
Annals of Physics
88
323-342
(1974).
- 24
- Press W.H., Flannery B.P., Teukolsky S.A., & Vetterling W.T.,
``Numerical Recipes, The Art of Scientific Computing''
Cambridge University Press
(1989).
- 25
- Price R.H. & Pullin J.
``Colliding black holes: The close limit'',
Phys. Rev. Lett.
72
3297-3300
(1994).
- 26
- Regge T., & Wheeler J.A.
``Stability of a Schwarzschild Singularity'',
Phys. Rev. D
108
1063
(1957).
- 27
- Seidel E.
Phys Rev D.
42
1884
(1990).
- 28
- Thorne K.S.,
``Multipole expansions of gravitational radiation'',
Rev. Mod. Phys.
52
299
(1980).
- 29
- Vishveshwara C.V.,
``Stability of the Schwarzschild metric'',
Phys. Rev. D.
1
2870,
(1970).
- 30
- Zerilli F.J.,
``Tensor harmonics in canonical form for gravitational
radiation and other applications'',
J. Math. Phys.
11
2203,
(1970).
- 31
- Zerilli F.J.,
``Gravitational field of a particle falling
in a Schwarzschild geometry analysed in
tensor harmonics'',
Phys. Rev. D.
2
2141,
(1970).
- 32
-
See, for instance, p. 840 of:
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973)
Gravitation, W. H. Freeman, San Francisco.
- 33
-
Brandt, Steven R. and Seidel, Edward (1996)
Evolution of distorted rotating black holes. III. Initial
data,
Phys. Rev., D54, 1403-1416.
- 34
-
Misner, Charles W. (1960)
Wormhole Initial Conditions,
Phys. Rev., 118, 1110-1111.
- 35
-
Misner, Charles W. (1963)
The Method of Images in Geometrostatics,
Ann. Phys., 24, 102-117.
- 36
-
Brill, Dieter R., and Lindquist, Richard W. (1963)
Interaction Energy in Geometrostatics
Phys. Rev., 131, 471-476.
- 37
-
D. Bernstein, Ph.D thesis University of Illinois Urbana-Champaign,
(1993)
- 38
-
D. S. Brill,Ann. Phys.7, 466 (1959)
- 39
-
K. Camarda, Ph.D thesis University of Illinois Urbana-Champaign, (1998)
- 40
-
E. T. Newman and R. Penrose, J. Math. Phys. 3, 566-578; erratum
4, 998 (1962).
- 41
-
F. A. E. Pirani, in Lectures on General Relativity, edited by
S. Deser and K. W. Ford (Prentice-Hall, Englewood Cliffs, NJ, 1965).
- 42
-
http://www.cactuscode.org/VizTools/DataVaultXVSutils.html
- 43
-
http://laplace.physics.ubc.ca/~matt/410/Doc/xvs/
- 44
-
http://laplace.physics.ubc.ca/Doc/DV/
|