next up previous contents
Next: About this document ... Up: ThornGuideStable Previous: Storage   Contents

Bibliography

1
http://www.cactuscode.org/VizTools/xgraph.html, http://jean-luc.aei.mpg.de/Codes/xgraph/

2
http://www.cactuscode.org/VizTools/Gnuplot.html, http://www.gnuplot.info

3
J. Thornburg.
Numerical Relativity in Black Hole Spacetimes.
Unpublished thesis, University of British Columbia.
1993.
Available from .

4
J. Thornburg.
A 3+1 Computational Scheme for Dynamic Spherically Symmetric Black Hole Spacetimes - II: Time Evolution.
Preprint gr-qc/9906022, submitted to Phys. Rev. D.

5
C. Shu.
High Order ENO and WENO Schemes for Computational Fluid Dynamics.
In T. J. Barth and H. Deconinck, editors High-Order Methods for Computational Physics. Springer, 1999.
A related online version can be found under Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws at http://www.icase.edu/library/reports/rdp/97/97-65RDP.tex.refer.html.

6
D. W. Neilsen and M. W. Choptuik.
Ultrarelativistic fluid dynamics.
Class. Quantum Grav., 17:733-759, 2000.

7
J. York, in Sources of Gravitational Radiation, edited by L. Smarr (Cambridge University Press, Cambridge, England, 1979).

8
Abrahams A.M. & Cook G.B. ``Collisions of boosted black holes: Perturbation theory predictions of gravitational radiation'' Phys. Rev. D 50 R2364-R2367 (1994).

9
Abrahams A.M., Shapiro S.L. & Teukolsky S.A. ``Calculation of gravitational wave forms from black hole collisions and disk collapse: Applying perturbation theory to numerical spacetimes'' Phys. Rev. D. 51 4295 (1995).

10
Abrahams A.M. & Price R.H. ``Applying black hole perturbation theory to numerically generated spacetimes'' Phys. Rev. D. 53 1963 (1996).

11
Abrahams A.M. & Price R.H. ``Black-hole collisions from Brill-Lindquist initial data: Predictions of perturbation theory'' Phys. Rev. D. 53 1972 (1996).

12
Abramowitz, M. & Stegun A. ``Pocket Book of Mathematical Functions (Abridged Handbook of Mathematical Functions'', Verlag Harri Deutsch (1984).

13
Andrade Z., & Price R.H. ``Head-on collisions of unequal mass black holes: Close-limit predictions'', preprint (1996).

14
Anninos P., Price R.H., Pullin J., Seidel E., and Suen W-M. ``Head-on collision of two black holes: Comparison of different approaches'' Phys. Rev. D. 52 4462 (1995).

15
Arfken, G. ``Mathematical Methods for Physicists'', Academic Press (1985).

16
Baker J., Abrahams A., Anninos P., Brant S., Price R., Pullin J. & Seidel E. ``The collision of boosted black holes'' (preprint) (1996).

17
Baker J. & Li C.B. ``The two-phase approximation for black hole collisions: Is it robust'' preprint (gr-qc/9701035), (1997).

18
Brandt S.R. & Seidel E. ``The evolution of distorted rotating black holes III: Initial data'' (preprint) (1996).

19
Cunningham C.T., Price R.H., Moncrief V., ``Radiation from collapsing relativistic stars. I. Linearized Odd-Parity Radiation'' Ap. J. 224 543-667 (1978).

20
Cunningham C.T., Price R.H., Moncrief V., ``Radiation from collapsing relativistic stars. I. Linearized Even-Parity Radiation'' Ap. J. 230 870-892 (1979).

21
Landau L.D. & Lifschitz E.M., ``The Classical Theory of Fields'' (4th Edition), Pergamon Press (1980).

22
Mathews J. ``'', J. Soc. Ind. Appl. Math. 10 768 (1962).

23
Moncrief V. ``Gravitational perturbations of spherically symmetric systems. I. The exterior problem'' Annals of Physics 88 323-342 (1974).

24
Press W.H., Flannery B.P., Teukolsky S.A., & Vetterling W.T., ``Numerical Recipes, The Art of Scientific Computing'' Cambridge University Press (1989).

25
Price R.H. & Pullin J. ``Colliding black holes: The close limit'', Phys. Rev. Lett. 72 3297-3300 (1994).

26
Regge T., & Wheeler J.A. ``Stability of a Schwarzschild Singularity'', Phys. Rev. D 108 1063 (1957).

27
Seidel E. Phys Rev D. 42 1884 (1990).

28
Thorne K.S., ``Multipole expansions of gravitational radiation'', Rev. Mod. Phys. 52 299 (1980).

29
Vishveshwara C.V., ``Stability of the Schwarzschild metric'', Phys. Rev. D. 1 2870, (1970).

30
Zerilli F.J., ``Tensor harmonics in canonical form for gravitational radiation and other applications'', J. Math. Phys. 11 2203, (1970).

31
Zerilli F.J., ``Gravitational field of a particle falling in a Schwarzschild geometry analysed in tensor harmonics'', Phys. Rev. D. 2 2141, (1970).

32
See, for instance, p. 840 of: Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973) Gravitation, W. H. Freeman, San Francisco.

33
Brandt, Steven R. and Seidel, Edward (1996) Evolution of distorted rotating black holes. III. Initial data, Phys. Rev., D54, 1403-1416.

34
Misner, Charles W. (1960) Wormhole Initial Conditions, Phys. Rev., 118, 1110-1111.

35
Misner, Charles W. (1963) The Method of Images in Geometrostatics, Ann. Phys., 24, 102-117.

36
Brill, Dieter R., and Lindquist, Richard W. (1963) Interaction Energy in Geometrostatics Phys. Rev., 131, 471-476.

37
D. Bernstein, Ph.D thesis University of Illinois Urbana-Champaign, (1993)

38
D. S. Brill,Ann. Phys.7, 466 (1959)

39
K. Camarda, Ph.D thesis University of Illinois Urbana-Champaign, (1998)

40
E. T. Newman and R. Penrose, J. Math. Phys. 3, 566-578; erratum 4, 998 (1962).

41
F. A. E. Pirani, in Lectures on General Relativity, edited by S. Deser and K. W. Ford (Prentice-Hall, Englewood Cliffs, NJ, 1965).

42
http://www.cactuscode.org/VizTools/DataVaultXVSutils.html

43
http://laplace.physics.ubc.ca/~matt/410/Doc/xvs/

44
http://laplace.physics.ubc.ca/Doc/DV/