
SAGA Tutorial Exercise

Ole Weidner, Hartmut Kaiser, Andre Merzky, Shantenu Jha

22 Nov 2010

Contents

0.1 Prerequisites . 2
0.2 SAGA Applications . 2

0.2.1 Unit I: Command Line Utilities 3
0.2.2 Unit II . 3
0.2.3 Unit III: Running a SAGA application. 4
0.2.4 Unit IV: SAGA-based Applications: 5

0.3 Example 1: Hello distributed world!
(hello world.cpp) . 6

0.4 Example 2: Multiple Sequential Jobs
(chaining jobs.cpp) . 9

0.5 Example 3: Managing Dependencies between Jobs
(depending jobs.cpp) . 12

0.6 Additional Real World Example 17
0.7 Programming Exercise: . 18

0.7.1 Exercise 1: . 18
0.7.2 Exercise 2: . 18

0.8 Conclusion . 18

1

Scope of this Tutorial

The scope of this tutorial is to provide the audience with the required re-
sources and technical knowledge (hands-on experience) to start hacking their
own distributed applications with SAGA. We will begin with a quick overview
of how to use SAGA – the basic, and then quickly dive into simple yet com-
plete applications written using SAGA. In the latter half we will discuss a
couple of “complex” applications, which aren’t complex at all, but would
have been if they hadn’t been written in SAGA.

The source code for all the examples in this tutorials are part of
the saga-core source tree and can be found at:

http://svn.cct.lsu.edu/repos/saga/core/trunk/examples/tutorial

0.1 Prerequisites

This tutorial requires basic knowledge of the C/C++ programming language.
Experience using the command line on a Linux/UNIX based operating sys-
tem and a basic idea of what a compiler, a linker and a Makefile is might
come in handy.

Unless this tutorial is going to be preceded by a SAGA installation tutorial,
the students are required to have a fully working installation of SAGA on
their laptops/lab machines (preferred), or remote access (e.g. via SSH) to a
machine with SAGA installed.

0.2 SAGA Applications

Every application that uses even a single SAGA call is considered a SAGA
application, since it triggers the whole (SAGA) stack. SAGA is not a frame-
work, but it provides the building blocks from which to develop frameworks
and/or applications. Loosely speaking, SAGA is programming system for dis-
tributed applications; it is important to understand that it does not impose
a specific programming model. Remember the rough taxonomy that we pre-
sented of three ways of developing distributed applications using SAGA: (i)
Implement a distributed submission/execution mode for a legacy application;
(ii) Create a framework that supports a specific application characteristics

2

and/or pattern, or (iii) Compose applications from multiple (distributed)
units, which in a way makes it an a priori application.

0.2.1 Unit I: Command Line Utilities

The following is a simple example of an application that copies a file. There
are more such simple (command-line utilities) that we will discuss at:
https://svn.cct.lsu.edu/repos/saga/core/trunk/tools/clutils/

///

#include <saga/saga.hpp>

int main(int argc, char * argv[])

{

saga::url source("ssh://hostname//etc/passwd");

saga::url target(".");

saga::filesystem::file file (source, saga::filesystem::Read);

file.copy(target);

return 0;

}

///

Q: Which of the three types of distributed applications would you classify
the above copy program into?

0.2.2 Unit II

Compiling and linking. Like with any other C/C++ library, you have to
let the compiler and the linker know where to find the header files and the
library. To make life easier, SAGA provides a Makefile which you can include
in order to build your application:

SAGA_SRC = $(wildcard *.cpp)

SAGA_ADD_BIN_OBJ = $(SAGA_SRC:%.cpp=%.o)

SAGA_BIN = my_saga_app

include $(SAGA_LOCATION)/share/saga/make/saga.application.mk

3

Other (optional) compiler and linker flags

SAGA_CPPFLAGS += -I/opt/super/include

SAGA_LDFLAGS += -L/opt/super/lib -lsuper

Of course it is also possible to compile and link a SAGA application
manually:

g++ -Wall -I$SAGA_LOCATION/include -pthread \

-L$SAGA_LOCATION/lib \

-lsaga_engine -lsaga_package_job -lsaga_package_XYZ \

<FILENAME>.cpp

0.2.3 Unit III: Running a SAGA application.

SAGA needs to know where its configuration files are located and where to
find its middleware adaptors. This is done via the SAGA LOCATION environ-
ment variable, e.g.:

export SAGA_LOCATION=/opt/saga-1.5.3-pre/

In order to run a SAGA application, you have to make sure that all
required libraries can be found by the loader in case SAGA is not installed
within the default system path. The easiest way to do that is to set the
LD LIBRARY PATH (DYLD LIBRARY PATH on Mac OS), e.g.:

export LD_LIBRARY_PATH=$SAGA_LOCATION/lib:$LD_LIBRARY_PATH

Another (optional) environment variable that might come in handy is
SAGA VERBOSE in case something goes wrong. If set, SAGA will print detailed
debug information to a log-file in the working directory, e.g.:

export SAGA_VERBOSE=100

4

0.2.4 Unit IV: SAGA-based Applications:

You have had some initial exposure to the API when going through the
command-line utilities. In this section, we will work with three different
examples. The aim of these applications is to give you a quick feel for how
SAGA is actually utilized to develop complete, stand-alone distributed appli-
cations. And although these examples are by necessity very simple, they are
representative of the way you would use SAGA in actual real-world examples
to develop many of the scientific applications.

In the first example, we will introduce a simple “Hello Distributed World!”,
where the aim will be to submit three simple remote jobs using SAGA. In
the second example application (“chaining jobs.cpp”), we will serialize the
launch of three (remote) jobs, so that the second job is launched after the
first, and the third job is launched after the second. In the third example
application (“depending jobs.cpp”), we will start an application that once
started, is able to re-spawn itself on another machine, and after doing so in-
crements a “global counter”. Finally, we will leave you with a programming
exercise that will build upon your understanding of application examples 2
and 3.

5

0.3 Example 1: Hello distributed world!
(hello world.cpp)

Submit three jobs to three machines. One returns Hello, one returns Dis-
tributed and one returns World. They may or may not return in the right
order. This should give you an an idea how they could potentially speed up
their application using multiple resources. Also, execute the program several
times. Do you notice any difference in the outputs? Are they same?

///

#include <iostream>

#include <saga/saga.hpp>

#include <boost/thread.hpp>

///

// The hello_world example is meant to be a very simple and first example to

// try when it comes to SAGA. It’s purpose is to spawn 3 (possibly remote)

// identical jobs (/bin/echo) while passing the 3 words "Hello", "distributed",

// and "world!" on their command lines. The result is that the jobs will print

// the respective command line arguments (hey, it’s /bin/echo we’re

// launching...). The master job (this one) waits for the 3 child jobs to

// finish. It intercepts the generated output and prints it to the user.

//

// Depending on which child jobs finish first the overall printed message might

// be some combination of the 3 arguments we passed. But most of the time you

// will see "Hello distributed world!", which is our way of saying hello and

// welcome to the world of SAGA.

///

///

// The URLs to spawn jobs to. Please change the 3 macros below to the URLs

// you want the 3 childs to be spawned to.

///

#define URL1 "fork://localhost"

#define URL2 "fork://localhost"

#define URL3 "fork://localhost"

6

///

// the routine spawning the SAGA jobs and waiting for their results

void run_a_job(saga::url url, std::string argument)

{

try {

saga::job::service js (url);

saga::job::ostream in;

saga::job::istream out;

saga::job::istream err;

// run the job

saga::job::job j = js.run_job("/bin/echo " + argument, "", in, out, err);

// wait for the job to finish

j.wait ();

// if the job finished successfully, print the generated output

if (j.get_state () == saga::job::Done)

{

std::string line;

while (!std::getline(out, line).eof())

std::cout << line << ’\n’;

}

else {

std::cerr << "SAGA job: " << j.get_job_id() << " failed\n";

}

}

catch (saga::exception const& e) {

std::cerr << "saga::exception caught: " << e.what () << std::endl;

}

catch (std::exception const& e) {

std::cerr << "std::exception caught: " << e.what () << std::endl;

}

catch (...) {

std::cerr << "unexpected exception caught" << std::endl;

}

7

}

///

int main(int argc, char* argv[])

{

// run 3 separate threads executing the saga calls

boost::thread t1 (run_a_job, URL1, "Hello");

boost::thread t2 (run_a_job, URL2, "distributed");

boost::thread t3 (run_a_job, URL3, "world!");

// wait for all spawned threads to finish

t1.join();

t2.join();

t3.join();

return 0;

}

///

8

0.4 Example 2: Multiple Sequential Jobs
(chaining jobs.cpp)

Applications The aim of this section is to see how SAGA is used to imple-
ment common higher-level functionality that is used by Distributed Applica-
tions (DA). Specifically, we will look at two commonly occurring functionality
required by DA.

Example 1: Here we will demonstrate the ability to checkpoint, use
a specified resource, self-migrate and restart on a different computational
resource.

Here we will demonstrate this capability using the Hello distributed
world! example discussed in Unit IV. Instead of launching three jobs on
three machines, we will launch one job on one machine, which will then
launch itself on another machine, which in turn will do so onto yet another
machine.

///

#include <iostream>

#include <saga/saga.hpp>

///

// The chaining_jobs example tries to overcome one of the limitations of the

// hello_world example: it introduces dependencies between 3 (possibly remotely)

// spawned childs. In this example the next child will be spawned only after

// the previous one has finished its execution. To make it more interesting we

// now use /usr/bin/bc to do some calculations, where the result of the previous

// calculation is used as the input for the next one.

//

// Try to make more complex calculations if you like!

///

///

// The URLs names to spawn jobs to. Please change the 3 macros below to the

// urls you want the 3 childs to be spawned to.

///

#define URL1 "fork://localhost"

#define URL2 "fork://localhost"

#define URL3 "fork://localhost"

9

///

// the routine spawning the SAGA jobs and waiting for their results

std::string increment (saga::url url, std::string argument)

{

try {

saga::job::service js (url);

saga::job::ostream in;

saga::job::istream out, err;

// run the job

s = j.get_state();

// if the job didn’t start successfully, print error message

if (j.get_state () != saga::job::Running) {

std::cerr << "SAGA job: " << j.get_job_id() << " failed" << std::endl;

return argument;

}

// feed the remote process some input, receive result,

// and quit remote process

in << "1 + " << argument << std::endl;

std::string line;

std::getline (out, line);

in << "quit\n";

return line;

}

catch (saga::exception const& e) {

std::cerr << "saga::exception caught: " << e.what () << std::endl;

}

catch (std::exception const& e) {

std::cerr << "std::exception caught: " << e.what () << std::endl;

}

catch (...) {

std::cerr << "unexpected exception caught" << std::endl;

}

return argument; // by default just return argument

10

}

///

int main(int argc, char* argv[])

{

std::string result;

// run the incrementor 3 times (i.e. spawn 3 jobs to increment the counter)

result = increment (URL1, "1");

result = increment (URL2, result);

result = increment (URL3, result);

std::cout << "The overall result is: " << result << std::endl;

return 0;

}

///

Once developed, this capability can be utilized by a wide range of dif-
ferent applications. In other words this capability described/shown above is
independent of any specific application logic. Do you know of a (Scientific)
application that could utilize this feature?

11

0.5 Example 3: Managing Dependencies between Jobs
(depending jobs.cpp)

In this example, we will introduce the advert service as a simple mechanism
to provide coordination between different distributed tasks. Specifically, the
advert service will be used by a set of jobs to increment a global counter ev-
erytime a job is successfully spawned. There are other ways of coordinating
distributed tasks/jobs, but the idea of a centralized data-store is arguably
the simplest, even if not the most robust (fault-tolerant) or tuned for perfor-
mance. Also, of interest is the respawn method.

///

#include <iostream>

#include <cassert>

#include <saga/saga.hpp>

#include <boost/lexical_cast.hpp>

///

//

// Start this example by providing an arbitrary number of URLs on the command

// line. It will re-spawn itself to each of the URLs. Each instance will

// increment a number stored in a central counter store, using the advert service.

//

//

// example usage (slightly shortened):

//

// # saga-advert remove_entry /tutorial/depending_jobs/counter

//

// # saga-advert dump_directory /tutorial/depending_jobs/

// /tutorial/depending_jobs/

//

// # make && ./depending_jobs fork://localhost fork://localhost

// advert entry does not yet exist - initialize counter to 0

//

// # saga-advert dump_directory /tutorial/depending_jobs/

// /tutorial/depending_jobs/

// /tutorial/depending_jobs/counter

// value : 2

12

//

// # make && ./depending_jobs fork://localhost fork://localhost

//

// # saga-advert dump_directory /tutorial/depending_jobs/

// /tutorial/depending_jobs/

// /tutorial/depending_jobs/counter

// value : 4

//

///

#define RESULT_STORE "/tutorial/depending_jobs/counter" // advert to store counter to

#define JOB_PATH "./depending_jobs" // put the correct path here

///

// retrieve the current value from the advert (counter store)

bool get_counter(int& counter)

{

counter = 0;

try {

saga::advert::entry e (RESULT_STORE, saga::advert::Read);

counter = boost::lexical_cast <int> (e.get_attribute ("value"));

}

catch (saga::does_not_exist const& e) {

std::cout << "advert not existing - init counter to 0" << std::endl;

counter = 0;

return true;

}

catch (saga::exception const& e) {

std::cerr << "saga::exception caught: " << e.what () << std::endl;

return false;

}

catch (std::exception const& e) {

std::cerr << "std::exception caught: " << e.what () << std::endl;

return false;

}

catch (...) {

std::cerr << "unexpected exception caught" << std::endl;

return false;

}

13

return true;

}

///

// store the current value into the advert (counter store)

bool set_counter(int counter)

{

try {

saga::advert::entry e(RESULT_STORE,

saga::advert::CreateParents |

saga::advert::Create |

saga::advert::ReadWrite);

e.set_attribute ("value", boost::lexical_cast <std::string> (counter));

}

catch (saga::exception const& e) {

std::cerr << "saga::exception caught: " << e.what () << std::endl;

return false;

}

catch (std::exception const& e) {

std::cerr << "std::exception caught: " << e.what () << std::endl;

return false;

}

catch (...) {

std::cerr << "unexpected exception caught" << std::endl;

return false;

}

return true;

}

///

// the routine spawning the SAGA jobs and waiting for their counter

void respawn(int argc, char *argv[])

{

assert(argc > 1); // we shouldn’t end up here without any given URL

try

{

// start the johb server on the given URL

saga::url url (argv[1]);

14

saga::job::service js (url);

// compose the command line, skip first argument

std::string commandline (JOB_PATH);

for (int i = 2; i < argc; ++i) {

commandline += " ";

commandline += argv[i];

}

// run the job

saga::job::job j = js.run_job(commandline);

// wait for the job to start

saga::job::state s = j.get_state();

while (s != saga::job::Running && s != saga::job::Failed)

s = j.get_state();

// if the job didn’t start successfully, print error message

if (s == saga::job::Failed) {

std::cerr << "SAGA job: " << j.get_job_id() << " failed (state: "

<< saga::job::detail::get_state_name(s) << ")\n";

}

// wait for the job to Finish

s = j.get_state();

while (s == saga::job::Running)

s = j.get_state();

}

catch (saga::exception const& e) {

std::cerr << "saga::exception caught: " << e.what () << std::endl;

}

catch (std::exception const& e) {

std::cerr << "std::exception caught: " << e.what () << std::endl;

}

catch (...) {

std::cerr << "unexpected exception caught" << std::endl;

}

}

15

///

Not surprisingly the code snippet above is independent of any application
specific details and focuses on the assignment of workloads to workers, exe-
cution and then retrieval. This specific approach adopted here relies heavily
on the use of the Advert Service.

///

int main(int argc, char* argv[])

{

if (argc == 1) {

// no more URLs are given, we’re done!

int counter = 0;

if (get_counter(counter))

std::cout << "The overall counter is: " << counter << std::endl;

}

else {

// otherwise get current value, increment it, and store new value

int counter = 0;

get_counter (counter); // will set counter to zero initially

// re-spawn this job, increment counter

// if set_counter fails, don’t bother to respawn

if (set_counter(counter + 1))

respawn(argc, argv);

}

return 0;

}

///

Q: Can you think of an a usage-mode that can be supported by the general
functionality to respawn a job? Long-running Simulations? What else?

16

0.6 Additional Real World Example

We will briefly discuss MapReduce – a computational pattern made famous
by Google’s use for its Search Engine Infrastructure. The fundamental idea
is that there is a Master which coordinates the distribution of work to a large
number of Workers, and manages the merging of the output of the computa-
tion that the Workers produce. In addition to performance, a fundamental
challenge is the need to be able to coordinate Master-Workers across a wide
range of distributed systems. For more details, check out the code at:

https://svn.cct.lsu.edu/repos/saga-projects/applications/MapReduce/

17

0.7 Programming Exercise:

0.7.1 Exercise 1:

Recall how when the program hello world was executed the order of the
values returned often varied. Can you use introduce dependencies between
the jobs so as to ensure that the output is always in order “Hello Distributed
World!”?

0.7.2 Exercise 2:

In earlier examples, we introduced the underlying concepts of submitting
jobs and coordination amongst multiple distributed jobs (tasks), where we
updated the value of a counter. Can the same approach (i.e. advert) be
used to coordinate the submission of multiple jobs? In effect, this is a way of
informing a job (that is ready to spawn another job) about which (possible)
machines to spawn too. The aim of this exercise is for you to complete
the code by implementing some (i) job submission functionality, and (ii)
accessing advert entries. (We will post a sample solution to this at the end
of the tutorial).

<CODE>

Think of generalizations to this concept: Say one application is “produc-
ing” this information (that is a list of possible resources), and this information
is being “consumed” by another application.

0.8 Conclusion

Let us recap that there are multiple types of distributed applications. What
you have seen here are simple applications that utilize distributed function-
ality, such as remote job submission to achieve tasks. What you should take
away from this tutorial are essentially the following:

• Distributed Applications can be developed much like regular applica-
tions. The challenges facing Distributed Applications – development
and deployment are different from traditional applications and many of
those challenges arise from the distributed infrastructure. It is to pre-
cisely meet these “unique” distributed computing challenges that there
is a need for simple, standard and pervasive application level interface
such as SAGA was conceived.

18

• We have focused on some of the challenges of developing distributed ap-
plications, such as coordinating distributed tasks. We have shown the
ability to do so in a simple fashion; however this is not necessarily scal-
able, and poses challenges for many real-world applications. Some other
real-world challenges we have not discussed here are fault-tolerance,
recovery, replication etc. SAGA provides APIs to these “Advanced”
features as well.

• Interestingly, we have built all the distributed functionality around
simple “ssh” adaptors; if you wanted to launch to a Globus or a Condor
specific infrastructure, you would just configure SAGA to utilize Globus
or Condor specific adaptors.

• Remember the following website http://saga.cct.lsu.edu is your
source of information for all things SAGA. And this document can be
found at:

19

	Prerequisites
	SAGA Applications
	Unit I: Command Line Utilities
	Unit II
	Unit III: Running a SAGA application.
	Unit IV: SAGA-based Applications:

	Example 1: Hello distributed world! (hello_world.cpp)
	Example 2: Multiple Sequential Jobs (chaining_jobs.cpp)
	Example 3: Managing Dependencies between Jobs (depending_jobs.cpp)
	Additional Real World Example
	Programming Exercise:
	Exercise 1:
	Exercise 2:

	Conclusion

