
C++ Coding Guidlines for the SAGA C++

Reference Implementation ’SAGA-A’

Andre Merzky and Hartmut Kaiser∗

June 30, 2009

Abstract

This Documents presents the C++ coding conventions as used by the
SAGA C++ Reference Implementation. They should be followed by all
contributing parties.

Contents

1 C++ 2
1.1 File Organization . 2
1.2 File Names . 2
1.3 Source Files . 3
1.4 Header Files . 3
1.5 Indentation . 4

1.5.1 Line Length . 4
1.5.2 Wrapping Lines . 4

1.6 Comments . 6
1.6.1 Implementation Comment Formats 6
1.6.2 Documentation Comments 8

1.7 Declarations . 8
1.7.1 Number Per Line . 8
1.7.2 Initialisation . 9
1.7.3 Placement . 9
1.7.4 Public versus Private Declarations 10
1.7.5 Function Declarations . 10

1.8 Statements . 10
1.8.1 Simple Statements . 10
1.8.2 Compound Statements . 11
1.8.3 return Statements . 11
1.8.4 if, if-else, if else-if else Statements 12
1.8.5 for Statements . 12

0based on the GridLab style Guide by Tom Goodale

1

1.8.6 while Statements . 13
1.8.7 do-while Statements . 13
1.8.8 switch Statements . 13

1.9 White Space . 15
1.9.1 Blank Lines . 15
1.9.2 Blank Spaces . 15

1.10 Naming Conventions . 16
1.11 Programming Practices . 17

1.11.1 Adherence to Standards 17
1.11.2 Use typedef in preference to #defines 17
1.11.3 Use of const qualifier . 17
1.11.4 Global and Static variables 17
1.11.5 Constants . 17
1.11.6 Variable Assignments . 17
1.11.7 Miscellaneous Practices 18

1 C++

These coding conventions are from the GridLab Coding conventions. See http:
//www.gridlab.org/WorkPackages/techboard/Docs/coding_cpp.pdf/.

1.1 File Organization

A file consists of sections that should be separated by blank lines and an optional
comment identifying each section.

1.2 File Names

File names should be all lowercase, with the extension .hpp for include files,
and .cpp for source files. The file names should reflect the functionality de-
fined/implemented in that file. Files with logical connection (e.g. pairs of
header and source files) should reflect that connection in their names wherever
possible. Files belonging to the same moduleshould reflect that dependency
by a short uniq prefix to the filename, followed by an underscore. Following
examples illustrate this convention:

Makefile io_base.cpp
server.cpp io_base.hpp
server_ioplug.hpp io_file.hpp
server_ioplug.c io_file.cpp
io_cwrapper.hpp io_stream.hpp
io_cwrapper.c io_stream.cpp

2

http://www.gridlab.org/WorkPackages/techboard/Docs/coding_cpp.pdf/
http://www.gridlab.org/WorkPackages/techboard/Docs/coding_cpp.pdf/

1.3 Source Files

C++ source files have the following ordering:

• Beginning comments (see “Beginning Comments” on 3)

• #include statements

• #defines.

• local data type definitions.

• local (static) function prototypes.

• local (static) data.

• externally visible functions.

• local (static) functions.

Beginning Comments All source files should begin with a comment that
describes the file and its contents, and a copyright statement. The LICENSE line
in the example below is a placeholder for an automatically inserted license text.
That insertion is performed while packaging the code for distribution.

/**
*
* Brief description of contents of file.
*
* Long description
*
* Copyright notice.
*/

/*** LICENSE ***/

Note: This is a documentation comment – see section 1.6.2 for details.

1.4 Header Files

All header files should begin with a comment that describes the file and its
contents, and a copyright statement.

/**
* Brief description of contents of file.
*
* Long description
*

3

* Copyright notice.
*/

/*** LICENSE ***/

Note: This is a documentation comment – see section 1.6.2 for details.
To protect against multiple inclusion of headers, the contents of a header file

should be protected by a #ifndef ... #endif pair.

#ifndef NAME_OF_HEADER_FILE_IN_CAPITALS_HPP
#define NAME_OF_HEADER_FILE_IN_CAPITALS_HPP

...body of header file...

#endif // NAME_OF_HEADER_FILE_IN_CAPITALS_HPP

1.5 Indentation

Two spaces should be used as the unit of indentation. Tabs should not be used
as inconsistent use of tabs and spaces leads to difficulties when using “diff” or
other tools to compare files.

1.5.1 Line Length

Avoid lines longer than 80 characters, since they’re not handled well by many
terminals and tools.

1.5.2 Wrapping Lines

When an expression will not fit on a single line, break it according to these
general principles:

• Break after a comma.

• Break before an operator.

• Prefer higher-level breaks to lower-level breaks.

• Align the new line with the beginning of the expression at the same level
on the previous line.

• If the above rules lead to confusing code or to code that’s squished up
against the right margin, just indent 8 spaces instead.

Here are some examples of breaking function calls:

4

Function (longExpression1, longExpression2, longExpression3,
longExpression4, longExpression5);

var = Function (longExpression1,
Function2 (longExpression2,

longExpression3));

Following are two examples of breaking an arithmetic expression. The first
is preferred, since the break occurs outside the parenthesised expression, which
is at a higher level.

LongName1 = LongName2 * (LongName3 + LongName4 - LongName5)
+ 4 * LongName6; /* PREFER */

LongName1 = LongName2 * (LongName3 + LongName4
- LongName5) + 4 * LongName6; /* AVOID */

Following are two examples of indenting function declarations. The first is
the conventional case. The second would shift the second and third lines to the
far right if it used conventional indentation, so instead it indents only 8 spaces.
Recommended is the third variant.

/* CONVENTIONAL INDENTATION */
Function (int AnArg, double AnotherArg, char *YetAnotherArg,

int *AndStillAnother)
{

...
}

/*INDENT 8 SPACES TO AVOID VERY DEEP INDENTS */
static ReallyLongFunctionName (int AnArg,

double anotherArg, char *YetAnotherArg,
int *AndStillAnother)

{
...

}

/* PREFERRED: PUT EACH ARG ON OWN LINE */
static ReallyLongFunctionName (int AnArg,

double anotherArg,
char * YetAnotherArg,
int * AndStillAnother)

{
...

}

Here are three acceptable ways to format ternary expressions:

5

alpha = (aLongBooleanExpression) ? beta : gamma;

alpha = (aLongBooleanExpression) ? beta
: gamma;

alpha = (aLongBooleanExpression)
? beta
: gamma;

1.6 Comments

Programs can have two kinds of comments: implementation comments and
documentation comments. Implementation comments are those delimited by
/*...*/, or single lines comments starting with //. Documentation comments
are delimited by /**...*/, and can be extracted to HTML files using the doxygen
tool.

Implementation comments are mean for commenting out code or for com-
ments about the particular implementation. Doc comments are meant to de-
scribe the specification of the code, from an implementation-free perspective, to
be read by developers who might not necessarily have the source code at hand.

Comments should be used to give overviews of code and provide additional
information that is not readily available in the code itself. Comments should
contain only information that is relevant to reading and understanding the pro-
gram. For example, information about how a corresponding package is built or
in what directory it resides should not be included as a comment.

Discussion of nontrivial or nonobvious design decisions is appropriate, but
avoid duplicating information that is present in (and clear from) the code. It
is too easy for redundant comments to get out of date. In general, avoid any
comments that are likely to get out of date as the code evolves.

Note:
The frequency of comments sometimes reflects poor quality of code. When

you feel compelled to add a comment, consider rewriting the code to make it
clearer.

Comments should not be enclosed in large boxes drawn with asterisks or
other characters. Comments should never include special characters such as
form-feed and backspace.

1.6.1 Implementation Comment Formats

Programs can have four styles of implementation comments: block, single-line,
trailing, and end-of-line.

Block Comments Block comments are used to provide descriptions of files,
methods, data structures and algorithms. Block comments may be used at the
beginning of each file and before each method. They can also be used in other

6

places, such as within functions. Block comments inside a function should be
indented to the same level as the code they describe.

A block comment should be preceded by a blank line to set it apart from
the rest of the code.

/*
* Here is a block comment (prefferred).
* Here is a block comment (prefferred).
* Here is a block comment (prefferred).
*/

// Here is anmother block comment.
// Here is anmother block comment.
// Here is anmother block comment.

See also “Documentation Comments” on page 8.

Single-Line Comments Short comments can appear on a single line in-
dented to the level of the code that follows. If a comment can’t be written
in a single line, it should follow the block comment format (see section 1.6.1). A
single-line comment should be preceded by a blank line. Here’s an example of
a single-line comment in C code (also see “Documentation Comments” on page
8):

if (condition)
{
// Handle the condition.
...

}

Trailing Comments Very short comments can appear on the same line as
the code they describe, but should be shifted far enough to separate them from
the statements. If more than one short comment appears in a chunk of code,
they should all be indented to the same tab setting.

Here’s an example of a trailing comment in C code:

if (a == 2)
{
a = TRUE; // special case

}
else
{
a = isPrime (a); // works only for odd a

}

7

1.6.2 Documentation Comments

For further details, see “The Doxygen Manual” which includes information on
the doc comment tags (@return, @param, @see):

http://www.doxygen.org

Doxygen comments describe C functions, structures, enums, unions, etc.
Each doc comment is set inside the comment delimiters /**...*/, with one com-
ment per class, interface, or member. This comment should appear just before
the declaration:

/**
* The Example function provides ...
*/
void Example (void)
{ ...

The first line of doc comment (/**) is not indented relative to the surround-
ing block; subsequent doc comment lines each have 1 space of indentation (to
vertically align the asterisks).

If you need to give information that isn’t appropriate for documentation, use
an implementation block comment (see section 1.6.1) or single-line (see section
1.6.1) comment immediately before the declaration. For example, details about
the implementation of a function should go in in such an implementation block
comment following the doc comment for the function, not in the function doc
comment.

1.7 Declarations

1.7.1 Number Per Line

One declaration per line is recommended since it encourages commenting. In
other words,

int level; // indentation level
int size; // size of table

is preferred over

int level, size;

Do not put different types on the same line. Example:

int foo, fooarray[SIZE]; // WRONG!

Note:
The examples above use one space between the type and the identifier.

Groups of declarations and comments should be lined up where possible (with
spaces, not tabs), e.g.:

8

http://www.doxygen.org

int level; // indentation level
int size; // size of table
Object currentEntry; // currently selected table entry

1.7.2 Initialisation

Variables should not be left un-initialized, or only as short as possible.

1.7.3 Placement

Put declarations only at the beginning of blocks. (A block is any code sur-
rounded by curly braces “{“ and “}”.) Don’t wait to declare variables until
their first use; it can confuse the unwary programmer and hamper code porta-
bility within the scope.

void MyFunction(...)
{
int int1 = 0; // beginning of block

if (condition)
{
int int2 = 0; // beginning of "if" block
...

}
}

The one exception to the rule is indices of for loops in C++, which can be
declared in the for statement:

for (int i = 0; i < MaxLoops; i++)
{
...

}

Avoid local declarations that hide declarations at higher levels. For example,
do not declare the same variable name in an inner block:

int MyFunction (...)
{
int count;

if (condition)

9

{
int count; // AVOID!
...

}

...
}

1.7.4 Public versus Private Declarations

When defining inheritance, class members and class methods, the minimal pos-
sible set should be public, the minimal possible set should be protected, and
the maximal possible set should be private. Always use the keywords public,
protected and private explicitely, and don’t rely on the defaults.

1.7.5 Function Declarations

When coding functions the following formatting rules should be followed:

• All functions should be preceded by a documentation comment describing
the function, its arguments and return code(s).

• Open brace “{“ appears at the beginning of the line following the decla-
ration statement

• Closing brace “}” starts a line by itself.

/** The sample function.
* This function calculates the sample thingy.
* Some more description.
*
* @param i The first argument.
* @param j the second argument.
*
* @return The sample value.
*/
int sample (int i, int j)
{
return (i + j);

}

1.8 Statements

1.8.1 Simple Statements

Each line should contain at most one statement. Example:

10

argv++; // Correct
argc--; // Correct
argv++; argc--; // AVOID!

1.8.2 Compound Statements

Compound statements are statements that contain lists of statements enclosed
in braces “{ statements }“. See the following sections for examples.

• The enclosed statements should be indented one more level than the com-
pound statement.

• The opening brace should be on a line by itself following the line that
begins the compound statement, indented to the same level as that line;
the closing brace should begin a line and be indented to the beginning of
the compound statement.

• Braces are used around all statements, even single statements, when they
are part of a control structure, such as a if-else or for statement. This
makes it easier to add statements without accidentally introducing bugs
due to forgetting to add braces.

void sample (int t)
{
for (int i = 0; i < t; i++)
{
if (3 == t)
{
return;

}
}

return;
}

1.8.3 return Statements

Unless a return value is a single word expression, the return statement should
use parentheses to make the return value more obvious. Example:

return;

return size;

11

return (fix_size (size));

return (size ? size : defaultSize);

1.8.4 if, if-else, if else-if else Statements

The if-else class of statements should have the following form:

if (condition)
{
statements;

}

if (condition)
{
statements;

}
else
{
statements;

}

if (condition)
{
statements;

}
else if (condition)
{
statements;

}
else
{
statements;

}

Note:
if statements always use braces {}. Avoid the following error-prone form:

if (condition) // AVOID!
statement;

1.8.5 for Statements

A for statement should have the following form:

for (initialization; condition; update)

12

{
statements;

}

An empty for statement (one in which all the work is done in the initial-
ization, condition, and update clauses) should have the following form, which
makes its purpose more obvious:

for (initialization; condition; update) ;

When using the comma operator in the initialization or update clause of a for
statement, avoid the complexity of using more than three variables. If needed,
use separate statements before the for loop (for the initialization clause) or at
the end of the loop (for the update clause).

1.8.6 while Statements

A while statement should have the following form:

while (condition)
{
statements;

}

An empty while statement should have the following form:

while (condition) ;

1.8.7 do-while Statements

A do-while statement should have the following form:

do
{
statements;

} while (condition);

1.8.8 switch Statements

A switch statement should have the following form:

switch (condition)
{
case ABC:
statements;
// falls through

13

case DEF:
statements;
break;

case XYZ:
statements;
break;

default:
statements;
break;

}

Every time a case falls through (doesn’t include a break statement), add a
comment where the break statement would normally be. This is shown in the
preceding code example with the /* falls through */ comment.

Every switch statement should include a default case. The break in the
default case is redundant, but it prevents a fall-through error if later the default
is changed to a specific case and a new default is introduced.

For longer code blocks, brackets can be used for the indivudual cases, as in
the following example, but should be used always or not at all in a single case
block:

switch (condition)
{
case ABC:
{
statements;
statements;
statements;
// falls through

}

case DEF:
{
statements;
break;

}

case XYZ:
{
statements;
break;

}

default:

14

{
statements;
break;

}
}

1.9 White Space

1.9.1 Blank Lines

Blank lines improve readability by setting off sections of code that are logically
related.

Two blank lines should always be used in the following circumstances:

• Between sections and functions of a source file

One blank line should always be used in the following circumstances:

• Between the local variable declarations in a block and its first statement

• Before a block (see section 1.6.1) or single-line (see section 1.6.1) comment

• Between logical sections inside a function to improve readability

1.9.2 Blank Spaces

Blank spaces should be used in the following circumstances:

• A blank space should appear after commas in argument lists.

• All binary operators should be separated from their operands by spaces.
Blank spaces should never separate unary operators such as unary minus,
increment (“++”), and decrement (“--”) from their operands. Example:
a + b; i++;.

• brackets of if, for, while, and do operators should have leading and trailing
blanks (“if (3 == i)”, not “if (3 == i)”).

a += c + d;
a = (a + b) / (c * d);

while (d++ = s++)
{
n++;

}

• The expressions in a for statement should be separated by blank spaces.
Example:

15

for (expr1; expr2; expr3)

• Casts should be followed by a blank space. Examples:

MyFunction1 ((char) aNum, (double) x);
MyFunction2 ((int) (cp + 5), ((int) (i + 3) + 1);

• Template brackets should be separated by a blank space. Examples:

template <class T> MyFunction (void);
std::vector <std::pair <std::string, std::string> > map;

• Function invokations should have a blank before their brackets. Example:

a = get_a(b, c); // AVOID
a = get_a (b, c); // PREFER

1.10 Naming Conventions

Naming conventions make programs more understandable by making them eas-
ier to read.

Externally visible functions and classes if no namespaces are used, they should
have a short prefix uniquely identifying
the module, followed by an underscore,
followed by the rest of the identifier which
should consist of words, separated by un-
derscores, e.g. saga find resource.

Static functions and classes should follow the same convention as ex-
ternally visible functions, but need not to
have the prefix.

Variable names should be short yet meaningful. The
choice of a variable name should be
mnemonic – that is, designed to indicate
to the casual observer the intent of its
use. One-character variable names should
be avoided except for temporary “throw-
away” variables. Common names for tem-
porary variables are i, j, k, m, and n for
integers; c, d, and e for characters.

Private and protected class members should have a trailing underscore, like
my state .

#defines should be all uppercase.

16

1.11 Programming Practices

1.11.1 Adherence to Standards

All code should adhere to the ISO C++ standards. The presence or absence of
library functions not specified by the Posix standard on a particular platform
should be detected by use of Autoconf and appropriate logic emplaced to either
work around the absence or provide a good error message.

1.11.2 Use typedef in preference to #defines

New types should be introduced via typedefs rather than by #defines – these
types are then visible in debuggers and the compiler can do stronger type-
checking.

1.11.3 Use of const qualifier

Where possible pointers should be passed using the const qualifier. This is
especially important for strings.

1.11.4 Global and Static variables

Don’t make any variable global or static without good reason. Access to module
level statics in other files can often be granted via a function call rather than
by making the variable global.

1.11.5 Constants

Numerical constants (literals) should not be coded directly, except for -1, 0, and
1, or other numbers in loop counters.

1.11.6 Variable Assignments

Avoid assigning several variables to the same value in a single statement. It is
hard to read. Example:

fchar = lchar = ’c’; /* AVOID! */

Do not use the assignment operator in a place where it can be easily confused
with the equality operator. Example:

if (file = fopen(...))
{ /* AVOID! */
...

}

should be written as

17

if (NULL != (file = fopen (...)))
{
...

}

Do not use embedded assignments in an attempt to improve run-time per-
formance. This is the job of the compiler. Example:

d = (a = b + c) + r; /* AVOID! */

should be written as

a = b + c;
d = a + r;

1.11.7 Miscellaneous Practices

Parentheses It is generally a good idea to use parentheses liberally in expres-
sions involving mixed operators to avoid operator precedence problems. Even
if the operator precedence seems clear to you, it might not be to others-you
shouldn’t assume that other programmers know precedence as well as you do.

if (a == b && c == d) /* AVOID! */
if ((a == b) && (c == d)) /* RIGHT */

Returning Values Try to make the structure of your program match the
intent. Example:

if (booleanExpression)
{
return true;

}
else
{
return false;

}

should instead be written as

return booleanExpression;

18

Expressions before ‘?’ in the Conditional Operator If an expression
containing a binary operator appears before the ? in the ternary ?: operator, it
should be parenthesised. Example:

(x >= 0) ? x : -x;

Special Comments Use TODO in a comment to flag something that is bogus
but works, or missing pices. Use FIXME to flag something that is bogus and
broken.

Compilation with warnings enabled It is recommended that developers
compile with all warnings enabled. Compiler warnings often flag dubious prac-
tices and common coding errors.

19

	C++
	File Organization
	File Names
	Source Files
	Header Files
	Indentation
	Line Length
	Wrapping Lines

	Comments
	Implementation Comment Formats
	Documentation Comments

	Declarations
	Number Per Line
	Initialisation
	Placement
	Public versus Private Declarations
	Function Declarations

	Statements
	Simple Statements
	Compound Statements
	return Statements
	if, if-else, if else-if else Statements
	for Statements
	while Statements
	do-while Statements
	switch Statements

	White Space
	Blank Lines
	Blank Spaces

	Naming Conventions
	Programming Practices
	Adherence to Standards
	Use typedef in preference to #defines
	Use of const qualifier
	Global and Static variables
	Constants
	Variable Assignments
	Miscellaneous Practices

