
SAGA Manual Andre Merzky, LSU
Version: 1.0 March 28, 2010

The SAGA C++ API Programmer’s Guide

The Simple API for Grid Applications (SAGA) is a collection of C++ API pack-
ages defined on top of an overall programmatic appearance. The SAGA API
packages try to cover the bulk of the requirements needed for grid programming
like, for example, job submission, remote file transfer and replica management,
to name a few. This guide aims for the developer who wants to learn the basics
of how to use SAGA and C++ to develop applications that can make use of a
broad set of existing distributed and grid computing infrastructures.1

Status of This Document

This guide is still work in progress.

1editor
1In order to understand the intent and also the limitations of the SAGA

approach, it is useful to read the Wikipedia entry on ”Leaky Abstractions”
(http://en.wikipedia.org/wiki/Leaky abstraction), and also Joel Spolsky’s column on the
same topic (http://www.joelonsoftware.com/articles/LeakyAbstractions.html).

SAGA Manual March 28, 2010

Contents

1 Introduction 6

1.1 Getting Started . 9

2 Quick Start Guide 11

3 Building and Running your Application 13

3.1 Building your Application . 13

3.2 Running your Application . 16

I General SAGA Concepts 17

4 Error Handling 18

4.1 Quick Introduction . 18

4.2 Reference . 18

4.3 Details . 19

5 Using Data Buffers 22

5.1 Quick Introduction . 22

5.2 Reference . 22

5.3 Details . 23

6 Using Attributes 26

6.1 Quick Introduction . 26

6.2 Reference . 26

6.3 Details . 27

7 Using URLs 29

saga-users@cct.lsu.edu 2

SAGA Manual March 28, 2010

7.1 Quick Introduction . 29

7.2 Reference . 29

7.3 Details . 30

II Using the SAGA-API Packages 33

8 Using the File Package 34

8.1 Quick Introduction . 34

8.2 Reference . 35

8.3 Filesystem Details . 38

9 Using the Replica Package 42

9.1 Quick Introduction . 42

9.2 Reference . 43

9.3 Replica Details . 45

10 Using the Namespace Package 46

10.1 Quick Introduction . 46

10.2 Reference . 47

10.3 Details . 50

11 Using the Job Package 51

11.1 Quick Introduction . 51

11.2 Reference . 55

11.3 Job Details . 58

12 Using the Stream Package 62

12.1 Quick Introduction . 62

saga-users@cct.lsu.edu 3

SAGA Manual March 28, 2010

12.2 Reference . 63

12.3 Stream Details . 65

13 Using the RPC Package 68

13.1 Quick Introduction . 68

13.2 Reference . 68

13.3 Details . 69

14 Using the Advert Package 71

14.1 Quick Introduction . 71

14.2 Reference . 71

14.3 Details . 73

III Advanced Topics 74

15 Using Asynchronous Operations 75

15.1 Quick Introduction . 75

15.2 Reference . 77

15.3 Details . 77

16 Using Monitorables and Notifications 78

16.1 Quick Introduction . 78

16.2 Reference . 79

16.3 Details . 79

17 Specifying Security Details 80

17.1 Quick Introduction . 80

17.2 Reference . 81

saga-users@cct.lsu.edu 4

SAGA Manual March 28, 2010

17.3 Security Details . 81

18 Miscellaneous Issues 82

18.1 Primitive Data Types . 82

18.2 Boost, and C++/TR1 . 83

saga-users@cct.lsu.edu 5

SAGA Manual Introduction March 28, 2010

1 Introduction

What are Grids? How can you use them? Why would you need an API for
doing so? What makes SAGA different from other Grid APIs?

These are some of the questions which we will try to answer in this introduction.
Don’t expect a complete treatise on the subject though; in stead, we will refer
the interested reader to the literature where appropriate. Also, this introduction
can safely be skipped by readers which are familiar with Grid programming, or
even just with using Grids.

The text assumes that the reader has some familarity with the concept of dis-
tributed computing and programming of distributed applications.

Grid Computing

In “What is a Grid?” [?], a three point checklist is provided. Although by no
means rigorous or complete, it provides a starting point. Following that, Grids
are:

1. coordinated resources that are not subject to centralized control,
2. use standard, open, general-purpose protocols and interfaces,
3. deliver non-trivial qualities of service.

Compared to ’ordinary’ distributed computing, scalability seems thus to be a
prevalent property of Grids as these points above are arguable properties which
mostly arise from scalability issues. Jha: unclear...

Grid Standardization

A diverse Grid Computing community has emerged over the past few years; the
Open Grid Forum (OGF) [?] serves as a focus point for the Grid community
groups and Grid standardization efforts. The main topics of standardization
are many fold, and cover, amongst others,

• service architectures
• service interfaces
• wire protocols
• information models
• Grid related markup languages

saga-users@cct.lsu.edu 6

SAGA Manual Introduction March 28, 2010

• user interfaces

For this document, as might be obvious, the last point, which includes Ap-
plication Programming Interfaces (APIs), is of special interest. It should be
noted that OGF’s standardization mostly targets Grid middleware developers
and Vendors, and that the OGF’s API specifications are the top layer of OGF’s
standards stack.

Grid APIs

Traditionally, most distributed (and Grid) middleware systems come with a ’na-
tive’ API. Best known for such an API is Globus, a pioneering Grid Middleware
project: each version of Globus services was/is accompanied by an extensive
API which allows programmers (end-user application or otherwise), to make use
of these services, and provides access to Globus service client libraries, Globus
protocol implementations, Globus security tools, Globus markup languages, etc.

Despite the success of Globus, its approach exhibits a number of problems:
applications written against a specific version of the Globus API are not (easily)
portable to other versions of the API, and not portable at all to other Grid
middleware, such as Genesis-II, GridSam, or Unicore. Furthermore, typical
middleware APIs expose a specific set of features available in that middleware.
These do not necessarily match the Grid abstractions required by the various
applications; higher level services which provide these abstractions, are then
required to implement their own specific APIs.

That situation is, to some extent, comparable to the 80’s and 90’s, where many
vendors of parallel computers shipped their specific proprietary communication
library along with their product, to enable the end users to make use of the dis-
tributed compute power from within a single (distributed) application. Before
the establishment of MPI as a single dominant standard for this inter-node com-
munication, the creation of portable distributed applications was an extremely
difficult and tedious effort. Only the adoption of MPI by basically all clus-
ter vendors, and the native support for MPI on most platforms, could finally
alleviate that problem2.

SAGA

The Simple API for Grid Applications (SAGA), a proposed OGF standard, is
in several ways a comparable effort to MPI: SAGA tries to establish a single

2Note that MPI serves a specific problem space of tightly coupled massive parallel appli-
cations. Loosely coupled parallel applications, for example, are served by a different set of
distributed communication concepts, e.g., Peer2Peer systems, or component models, etc.

saga-users@cct.lsu.edu 7

SAGA Manual Introduction March 28, 2010

API for Grid application programmers, which is ideally shipped with all Grid
middleware, so that the programmer can focus on the application logic, instead
of having to deal with tedious and complex middleware details.

But SAGA tries to go further: instead of defining a fixed single common de-
nominator, SAGA is by definition an extensible and modular effort. By being
extensible both horizontally and vertically, SAGA should be able to adapt to
a variety of use cases and user communities. Additionally, our SAGA imple-
mentation can be extended by additional middleware bindings, to support the
widest possible portability for applications.

Horizontal Extensibility of SAGA

The SAGA approach is extremely modular: a stable and finite core set of SAGA
Look & Feel packages is accompanied by a variable set of functional API pack-
ages. That latter set is expected to grow over time, and to cover future emerging
Grid programming paradigms.

FIXME: graphics goes here

At the moment, the SAGA API covers the following functional packages:

jobs: job creation and management
files: interaction with file systems
replica: management of logical files
streams: BSD socket oriented IPC
rpc: remote procedure calls

All these packages are provided by our SAGA implementation. Additional pack-
ages, which are in the process of being defined, include:

adverts: persistent storage of application level information2

sd: service discovery2

messages: message based IPC
cpr: checkpoint and recovery
dais: database access and integration

Vertical Extensibility of SAGA

The experiences in various OGF user communities show that the Grid program-
ming models used in different application domains vary widely. In particular, it

2These packages are also provided in our implementation.

saga-users@cct.lsu.edu 8

SAGA Manual Introduction March 28, 2010

seems impossible to completely standardize information models, data models,
and data formats, without losing the abstractive power of a high level applica-
tion oriented API.

FIXME: graphics goes here

For that reason, SAGA tries to stay independent of these issues, and, at the
same time, offers (a) the flexibility to natively accommodate a variety of data
types and structures, and (b) the ability to additionally define higher level API
packages, which address application domain specific services and programming
models. If and how these additional high level packages are standardized is
then up to the community creating these packages. SAGA, however, maintains
a uniform and consistent API for a very wide variety of users and use cases,
without being too specific and inflexible.

Implementation Extensibility

Any Grid API is only as good and powerful as its underlying middleware is. How
does this statement hold for SAGA, which is by design not bound to a specific
Grid middleware? It holds true in fact: although the syntax and semantics of
the SAGA API calls remain stable over the various Grid middlewares SAGA is
running on top of, the specific performance characteristics, and in fact the exact
set of SAGA calls provided, may vary from case to case.

That may seem like a serious drawback, and probably is, but an API can do only
so much to emulate missing middleware features. In any case, to simplify the
runtime portability of applications, our SAGA implementation allows binding
to a variety of Grid middlewares at runtime, i.e., without the need to even relink
your application.

FIXME: graphics goes here

That functionality is provided by a plugin type mechanism, which loads middle-
ware adaptors into SAGA as required. These adaptors translate the SAGA API
calls to the specific Grid middleware actions. For more details on adaptors and
their maintenance and configurations, please refer to the installation manual.

1.1 Getting Started

The reader should by now have a fair idea of the target scope of the SAGA API:
it is designed to simplify the programming of novel applications which are to be
run on a variety of Grid middlewares.

The next chapter, the ’Quick Start Guide’, should be enough to get you go-

saga-users@cct.lsu.edu 9

SAGA Manual Introduction March 28, 2010

ing, and to compile and run small SAGA applications. The chapters after that
will discuss the SAGA Look & Feel in more detail, and also dive into the vari-
ous functional packages we provide. The chapters are independent, no specific
reading order is implied, unless noted otherwise.

saga-users@cct.lsu.edu 10

SAGA Manual Quick Start Guide March 28, 2010

2 Quick Start Guide

So, you are one of the impatient readers who dread long dry user manuals?
No problem: read this chapter, and you will have a good starting point to use
SAGA. After all, the S in SAGA stands for Simple! The remainder of the
document provides considerable more details about the API, but you can defer
the later chapters until you have indeed the need for more information.

It is important to understand that the API consists of two parts: the Look & Feel,
and the API packages. The packages are what you are most likely interested
in, because they provide the means to interact with the Grid: they start jobs,
copy files, perform remote procedure calls, etc. The Look & Feel provides the
syntactic and semantic expressiveness to control how these actions are expressed
(syntax) and performed (semantics). For example, the session management in
the Look & Feel part tells you how to specify the security constraints of your
actions, while the task model from the Look & Feel determines how you can
express syncronous versus asynchronous actions.

That all sounds rather theoretical: let us dive into some examples! The first
one allows you to copy a file3:

File copy

#include <saga/saga.hpp>

int main (int argc, char** argv)

{

// do a file copy

saga::url u(argv[1]);

saga::filesystem::file f (u);

f.copy (saga::url (argv[2]));

}

Isn’t that simple? Three lines, and your file is copied! file.copy() is provided
by the file class in the saga::filesystem package. That is a functional SAGA
call. So, how will non-functional properties of that call enter the picture? Let’s
try to have the same call asynchronously:

File copy (async version)

#include <saga/saga.hpp>

int main (int argc, char** argv)

{

// run a file copy asynchronously

3For the sake of brevity, we leave error and sanity checks out of the examples

saga-users@cct.lsu.edu 11

SAGA Manual Quick Start Guide March 28, 2010

saga::url u(argv[1]);

saga::filesystem::file f (u);

saga::task t = f.copy <saga::task::Async> (saga::url (argv[2]));

// do something else

// wait for the copy task to finish

t.wait ();

}

That is almost the same. In particular, the signature for the file.copy()
method is the same. It is, however, now qualified as saga::task::Async,
and returns a saga::task instance. That (stateful) task represents the asyn-
chronous call. You can think of the synchronous qualification as the default,
which can be left out.

Another Look & Feel package deals with monitoring, and allows, for example, to
get notifications if the task finishes. Yet another Look & Feel package allows to
specify security credentials for the copy operation, and so on and so forth.

So, that is the general picture: SAGA packages provide you with means to in-
teract with the Grid environment, and the Look & Feel packages determine how
these actions are executed, syntactically and semantically, altering the funtional
method’s performance.

The remainder of the document will give more details, first about the Look & Feel
packages of SAGA, and then about the functional packages. Each section starts
with a quick introduction (which should be enough to get you going in most
cases), followed by a reference section, and by a more detailed discussion where
appropriate. Finally, a number of advanced topics are discussed, which are
probably not of your interest initially, but they are certainly useful concepts as
soon as your application reaches a certain complexity itself.

Before diving into the API itself, we will describe the general context of the
SAGA API in a couple of pages, including a short description of the Grid stan-
dardization landscape, and some details about our specific implementation of
the SAGA API Specification. Hasn’t this already been done in the pre-
vious chapter?

saga-users@cct.lsu.edu 12

SAGA Manual Building and Running your Application March 28, 2010

3 Building and Running your Application

3.1 Building your Application

For Unix-like systems, a configure/make based build system is provided. That
system can also be used to compile your SAGA application, and is (briefly)
described below.

Furthermore, your SAGA installation offers a tool named saga-config, which
can also be used to determine the relevant compile parameters.

SAGA uses a gnu-make based build system. It includes a number of makefiles
throughout the source tree, and the $SAGA_ROOT/make/ directory. All these
make includes4 get installed into $SAGA_LOCATION/share/saga/make/5.

When compiling your application, these make includes may provide an easy
starting point. All you need to do is to set SAGA_LOCATION to have it point to
your SAGA installation root, and to include saga.application.mk, which will
add all rules required to build a SAGA application. The following Makefile stub
should get you started:

Makefile for SAGA applications

SAGA_SRC = $(wildcard *.cpp)

SAGA_BIN = $(SRC:%.cpp=%)

include $(SAGA_LOCATION)/share/saga/make/saga.application.mk

This stub loads the make rules, etc., needed to build the application. If the
application needs additional include directories or libraries, use the following
syntax after the make includes:

Makefile: setting compiler/linker flags

SAGA_CPPFLAGS += -I/opt/super/include

SAGA_LDFLAGS += -L/opt/super/lib -lsuper

Of course it is possible to build SAGA applications with custom Makefiles. The
SAGA make includes can still, however, be used to obtain the SAGA specific
compiler:

4A make include is a makefile building block
5For details on building and installing SAGA, please refer to the SAGA installation manual.

saga-users@cct.lsu.edu 13

SAGA Manual Building and Running your Application March 28, 2010

Custom Makefile

SRC = $(wildcard *.cpp)

OBJ = $(SRC:%.cpp=%.o)

BIN = $(SRC:%.cpp=%)

CXX = g++

CXXFLAGS = -c -O3 -pthreads -I/opt/mpi/include

LD = $(CXX)

LDFLAGS = -L/usr/lib/ -lc

include $(SAGA_LOCATION)/share/saga/make/saga.engine.mk

include $(SAGA_LOCATION)/share/saga/make/saga.package.file.mk

all: $(BIN)

$(OBJ): %.o : %.cpp

$(CXX) $(CXXFLAGS) $(SAGA_CXXFLAGS) -o $@ $<

$(BIN): % : %.o

$(LD) $(LDFLAGS) $(SAGA_LDFLAGS) -o $@ $<

SAGA_CXXFLAGS and SAGA_LDFLAGS contain only those options and settings
which are required to use SAGA. You may want to use ’make -n’ to print
what the resulting make commands are, in order to debug eventual incompati-
bilities between the SAGA compiler and linker flags, and your own ones.

Yet another option is to use the output of saga-config for makefiles:

saga-config used in Makefile

SRC = $(wildcard *.cpp)

OBJ = $(SRC:%.cpp=%.o)

BIN = $(SRC:%.cpp=%)

CXX = gcc

CPPFLAGS = -I/opt/mpi/include

CXXFLAGS = -c -O3 -pthreads

LD = $(CXX)

LDFLAGS = -L/opt/mpi/lib/ -lmpi

CPPFLAGS += $(shell $(SAGA_LOCATION)/bin/saga-config --cppflags)

CXXFLAGS += $(shell $(SAGA_LOCATION)/bin/saga-config --cxxflags)

LDFLAGSS += $(shell $(SAGA_LOCATION)/bin/saga-config --ldflags)

.default: $(BIN)

saga-users@cct.lsu.edu 14

SAGA Manual Building and Running your Application March 28, 2010

$(BIN): % : %.cpp

$(OBJ): %.o : %.cpp

$(CXX) $(CPPFLAGS) $(CXXFLAGS) -o $@ $<

$(BIN): % : %.o

$(LD) $(LDFLAGS) -o $@ $<

Linkage Options

The SAGA libraries come in two flavours: standard and lite. The standard
version is what you have observed in the examples above: your application is
linked against the libsaga_engine, and against the available/required packages
(libsaga_package_abc). The adaptor libraries (libsaga_adaptor_xyz) are
not linked to the application, but are loaded at runtime.

That standard version offers the most flexibility for your application, and allows
it to adapt linkage to a wide range of use cases. The runtime adaptor loading
allows you to adapt your application to Grid middleware variations at runtime.
That comes at a cost: at runtime, the shared library dependencies have to be
resolved, and SAGA has to be correctly configured to find the adaptor libraries
at runtime. The former can be resolved by linking your application statically,
but the SAGA runtime configuration cannot be avoided.

That is the reason why we provide the second, ’lite’ version of the SAGA library:
it is a single shared library which contains the SAGA engine, all available pack-
ages, and a set of adaptors. These adaptors are thus not loaded at runtime, but
are linked at link-time. Other adaptors can, however, still be loaded at runtime,
as before.

That way, no SAGA runtime configuration is required at all, as all dependencies
are resolved on link-time. The SAGA installation manual provides more infor-
mation on the selection of adaptors to be included into the (libsaga_lite).
Note that this comes at a cost as well: your application binary will be larger,
as all the adaptors are linked against it, whether they are needed or not.

The SAGA make system supports linking against the (libsaga_lite) like this:

Makefile for SAGA-Lite

SAGA_SRC = $(wildcard *.cpp)

SAGA_BIN = $(SRC:%.cpp=%)

SAGA_USE_LITE = yes

saga-users@cct.lsu.edu 15

SAGA Manual Building and Running your Application March 28, 2010

include $(SAGA_LOCATION)/share/saga/make/saga.application.mk

3.2 Running your Application

Your SAGA application should have only few runtime dependencies. First of
all, it needs to find the shared libraries you used, and the shared libraries your
SAGA installation is linked against. That may include libraries required by the
SAGA adaptors, e.g., globus libraries, openssl, etc. Depending on your operat-
ing system, you may need to set the environment variables LD_LIBRARY_PATH,
DYLD_LIBRARYPATH, or similar.

After starting, SAGA reads a couple of initialization files to determine your
specific set of adaptors, and several configuration options for these adaptors. In
general, you should not have the need to touch these ini files – SAGA configura-
tion and installation is supposed to be performed by the system administrator,
not the end user. In most cases, SAGA should be able to find these ini files
automatically (the installation prefix is statically compiled into SAGA. If that
fails, SAGA searches the following locations (in this order) for the main saga.ini
file:

/etc/saga.ini
$SAGA_LOCATION/share/saga/saga.ini
$HOME/.saga.ini
$PWD/.saga.ini
$SAGA_INI

Those ini files point to the individual adaptor ini files, which then allow SAGA
to load these adaptors.

While running, the SAGA library can print log messages, of varying verbosity.
That output is controlled by the environment variable SAGA_VERBOSE. The
values are as follows:

1: Critical
2: Error
3: Warning
4: Info
5: Debug
6: Blurb

When SAGA_VERBOSE is not set, the library is silent.

saga-users@cct.lsu.edu 16

SAGA Manual General SAGA Concepts March 28, 2010

Part I

General SAGA Concepts

A number of concepts and paradigms are used in all packages of the SAGA API.
The SAGA specification names these concepts as the ’SAGA Look&Feel’. This
section describes the most important concepts.

As this section does not actually provide the reader with the means to perform
any useful remote operation in Grids, the reader may want to skip this part and
continue to read Part II, and come back to this part as needed.

saga-users@cct.lsu.edu 17

SAGA Manual Error Handling March 28, 2010

4 Error Handling

4.1 Quick Introduction

SAGA error handling is exception-based: a rather flat hierarchy of 14 exception
types inherit the properties of the general saga::exception class. That allows
to inspect the exception for its exact type, and for the detailed error message(s)
associated with this exception.

HINT:
As our SAGA implementation is adaptor-based, a single API call could
actually return more than one exception at the same time. That is
rendered by returning the most specific exception, whose error message
then also contains the error messages from all the other exceptions,
usually one per adaptor.

4.2 Reference

Prototype: saga::exception class and derivates

namespace saga

{

class exception : public std::exception

{

public:

~exception() throw() {}

// Gets the message associated with the exception

char const* get_message() const throw()

// an alias for get_message

char const* what() const throw()

// get type of exception

saga::error get_error () const

// Gets the SAGA object associated with exception.

saga::object get_object () const throw()

};

// parameter related exceptions

class parameter_exception : public saga::exception

saga-users@cct.lsu.edu 18

SAGA Manual Error Handling March 28, 2010

class incorrect_url : public saga::parameter_exception

class bad_parameter : public saga::parameter_exception

// state related exceptions

class state_exception : public saga::exception

class already_exists : public saga::state_exception

class does_not_exist : public saga::state_exception

class incorrect_state : public saga::state_exception

class timeout : public saga::state_exception

// security related exceptions

class security_exception : public saga::exception

class permission_denied : public saga::security_exception

class authorization_failed : public saga::security_exception

class authentication_failed : public saga::security_exception

// general exceptions

class no_success : public saga::exception

class not_implemented : public saga::exception

4.3 Details

Error handling in SAGA is completely exception-based6. The following excep-
tions exist (note that the exception class names and the saga::error enums,
returned by exception.get_error() have identical names):

NotImplemented

A method is specified in the SAGA API, but is not provided by this specific
SAGA implementation7.

IncorrectURL

This exception indicates that a URL argument could not be handled.
For example, this implementation may be unable to handle the specified
protocol, or the access to the specified entity, via the given protocol, is
impossible.

BadParameter

This exception indicates that at least one of the parameters of the method
call is ill-formed, invalid, out of bounds or, otherwise, not usable. The

6The SAGA specification allows for an additional error handler interface to be imple-
mented by SAGA objects—that seemed unnecessary for object-oriented languages such as
C++.

7In particular, the method is not provided by any of the available adaptors, see Section ??.

saga-users@cct.lsu.edu 19

SAGA Manual Error Handling March 28, 2010

error message gives specific information on what parameter caused the
exception, and why.

AlreadyExists

This exception indicates that an operation cannot succeed because an
entity to be created already exists, and cannot be overwritten. Explicit
flags on the method invocation may allow the operation to succeed, e.g.,
if they indicate that Overwrite is allowed.

DoesNotExist

This exception indicates that an operation cannot succeed because a re-
quired entity is missing. Explicit flags on the method invocation may allow
the operation to succeed, e.g., if they indicate that Create is allowed.

IncorrectState

This exception indicates that the object a method was called upon is in
a state where that method cannot possibly succeed. A change of state
might allow the method to succeed with the same set of parameters.

PermissionDenied

An operation failed because the identity used for the operation did not
have sufficient permissions to successfully perform the operation.

AuthorizationFailed

An operation failed because none of the available contexts of the used
session could be used to access the given resource. In contrast to the
PermissionDenied, this exception usually indicates an error on the ad-
ministrative level, which usually cannot be fixed by the end user.

AuthenticationFailed

An operation failed because none of the available session contexts could
successfully be used for authentication. That exception usually indicates
invalid or outdated security credentials.

Timeout

This exception indicates that a remote operation was not completed suc-
cessfully, because the network communication or the remote service timed
out. This exception is never thrown if a timed wait() or similar method
times out, as that is not an error condition.

NoSuccess

This exception indicates that an operation failed for any other reason.
The exception message may, or may not, contain some more details about
the cause of the error.

saga-users@cct.lsu.edu 20

SAGA Manual Error Handling March 28, 2010

Even for simple SAGA operations, the implied Grid interactions can be fairly
complex and may invoke multiple remote operations. It may thus happen that
multiple exceptions apply during the execution of the method. In such cases,
the most specific exception is thrown (the list of exceptions above is ordered,
with the most specific exception up front).

Also, as the above Reference section shows, the exceptions are ordered in an
exception hierarchy. The application can thus try to catch whole classes of
exceptions, e.g., all security related exceptions, or all state related exceptions.
The code example below shows, however, how the lower level exceptions can be
accessed for debugging purposes:

Code Example

try

{

saga::url u ("/path/which/does/not/exist");

saga::filesystem::file f (u);

}

catch (saga::state_exception const & e)

{

switch (e.get_error ())

{

// handle does not exist

case saga::DoesNotExist:

{

std::cout << "file does not exist"

<< std::endl;

exit (-1);

break;

}

// generic handler for state related problems

default:

{

std::cout << "some other saga state exception caught: "

<< std::string (e.what ())

<< std::endl;

exit (0);

break;

}

}

}

saga-users@cct.lsu.edu 21

SAGA Manual Using Data Buffers March 28, 2010

5 Using Data Buffers

5.1 Quick Introduction

Various classes (e.g., saga::file and saga::stream) in the SAGA API ex-
pose I/O operations, i.e., chunks of binary data can be written to, or read from
these classes. Other classes (such as saga::rpc) handle binary data as pa-
rameters. In order to unify the application management of these data, SAGA
introduces the saga::buffer class, which is essentially a simple container class
for a byte buffer, plus a number of management methods. Various subclasses of
the saga::buffer exist, and, as described below, users are allowed, and actually
encouraged, to build their own ones.

The C++ rendering of SAGA distinguishes between mutable and non-mutable
buffers: non-mutable buffers are used for write-type operations, and cannot
be changed by the SAGA implementation; mutable buffers are for read-type
operations, and can be changed (i.e., new data can be added to the buffer).

5.2 Reference

Prototype: saga::buffer

namespace saga

{

class const_buffer

: public saga::object

{

public:

const_buffer (void const * data,

saga::ssize_t size);

~const_buffer (void);

saga::ssize_t get_size (void) const;

void const * get_data (void) const;

void close (double timeout = 0.0);

};

class mutable_buffer

: public saga::const_buffer

{

public:

typedef void buffer_deleter_ type(void* data);

typedef TR1::function <buffer_deleter_type> buffer_deleter;

static void default_buffer_deleter (void * data);

saga-users@cct.lsu.edu 22

SAGA Manual Using Data Buffers March 28, 2010

mutable_buffer (saga::ssize_t size = -1);

mutable_buffer (void * data,

saga::ssize_t size);

mutable_buffer (void * data,

saga::ssize_t size,

buffer_deleter cb);

~mutable_buffer (void);

void set_size (saga::ssize_t size = -1);

void set_data (void * data,

saga::ssize_t size,

buffer_deleter cb = default_buffer_deleter);

void * get_data (void); // non-const version

};

}

5.3 Details

Although the concept of an I/O buffer is very simple, and the prototype shown
above is rather straight forward, the semantic details of the SAGA buffer are
relatively rich. That holds true in particular for the memory management of
the buffer data segment. For the interested reader, the saga::buffer section
in the SAGA Core API specification contains quite some detail on that issue.

5.3.1 Buffer Memory Management

In general, buffers can operate in two different memory management modes:
the data segment can be user-managed (i.e., application-managed), or SAGA-
managed (i.e., implementation-managed). The constructors allow the appli-
cation to pass a memory area on buffer creation: if that buffer is given, and
not-NULL, then the SAGA implementation will use that buffer, and will never
re- nor de-allocate that memory (memory management is left up to the applica-
tion). On the other hand, if that memory area is not given, or given as NULL,
then the SAGA implementation will internally allocate the required amount of
memory, which MUST NOT be re- or de-allocated by the application (memory
management is left to the SAGA implementation).

Although the latter version is certainly convenient for the end user, it comes
with a potential performance penalty: data from the implementation allocated
buffer may sometimes need an additional memcopy into application memory.
If that is the case, it is up to you to decide what memory management mode
works best for your application use case.

saga-users@cct.lsu.edu 23

SAGA Manual Using Data Buffers March 28, 2010

HINT:
The most performant case is most of the time to re-use a single (or a
small set of) application allocated memory buffer(s) over and over again.
Note that you can use a larger size memory segment for a small buffer
by giving a smaller size parameter to the constructor.

Example saga::buffer usage

// allocate a ’large’ buffer statically

char mem[1024];

// create a saga buffer object for reading (mutable)

saga::mutable_buffer buf (mem, 512);

// open a file

saga::url u ("/etc/passwd");

saga::filesystem::file f (u);

// read data into buffer - the first 512 bytes get fill

f.read (buf);

// seek the buffer, so that the next read goes into the

// second half of the buffer

buf.set_data (mem + 512, 512);

// now read again

f.read (buf);

// the complete buffer should be filled now

// print what we got

std::cout << mem << std::endl;

5.3.2 Const versus Mutable Buffers

On write-like operations, the SAGA implementation has no need to change the
buffer’s data segment in any way: it only needs to read the data, and to copy
them to whatever entity the write operations happens upon. The implementa-
tion can thus treat the buffer as const, which allows a number of optimizations
and memory access safeguards to be employed.

On the other hand, read-like operations will usually require the SAGA imple-
mentation to write, or even to (re-)allocate the buffers memory segment. In
such cases, const safeguards cannot be employed.

saga-users@cct.lsu.edu 24

SAGA Manual Using Data Buffers March 28, 2010

HINT:
It is encouraged the use of const buffer instances for write-like oper-
ations, and of mutable buffer instances for read-like operations.

In order to simplify memory management and to provide optimal memory access
safeguards, the SAGA C++ bindings distinguish between const_buffer and
mutable_buffer classes. Both types can be used for write-like operations, but
only mutable_buffer instances can be used for read-like operations.

HINT:
It is possible to case mutable buffer instances to const buffer, which
allows to re-use buffers for all I/O operations and, at the same time,
allows the implementation to use const checking.
FIXME: Is that true?

saga-users@cct.lsu.edu 25

SAGA Manual Using Attributes March 28, 2010

6 Using Attributes

6.1 Quick Introduction

Attributes in SAGA are handled via the saga::attribute interface shown
above. That interface allows to set, query, and to inspect specific attributes
on those SAGA objects that implement the interface.

6.2 Reference

Prototype: saga::attribute

namespace saga

{

namespace attributes

{

// common attribute values

char const * const common_true = "True";

char const * const common_false = "False";

}

class attribute

{

public:

typedef std::vector <std::string> strvec_type;

typedef std::map <std::string, std::string> strmap_type;

std::string get_attribute (std::string key) const;

void set_attribute (std::string key,

std::string val);

strvec_type get_vector_attribute (std::string key) const;

void set_vector_attribute (std::string key,

strvec_type val);

void remove_attribute (std::string key);

strvec_type list_attributes (void) const;

strvec_type find_attributes (std::string pat) const;

bool attribute_exists (std::string key) const;

bool attribute_is_readonly (std::string key) const;

bool attribute_is_writable (std::string key) const;

bool attribute_is_vector (std::string key) const;

bool attribute_is_removable (std::string key) const;

};

saga-users@cct.lsu.edu 26

SAGA Manual Using Attributes March 28, 2010

}

6.3 Details

A prominent example is the saga::job::description class:

Code Example

saga::job::description jobdef;

std::vector <std::string> args;

args.push_back ("2");

jobdef.set_attribute ("Executable", "/bin/sleep");

jobdef.set_vector_attribute ("Arguments", args);

saga::job job = js.create_job (jobdef);

That example, as simple as it is, already shows most of what the attribute
interface offers—that interface is really simple! For some classes, the set of
available attributes is fixed, and will never change. That is also the case for the
job description from the example above. For other classes, such as for logical
files (saga::logical file), the application programmer can specify arbitrary
attributes – their interpretations are, of course, up to the application again.

Note that SAGA defines the known available attributes as static strings. Thus,
the above example is more safely written as:

Code Example

saga::job::description jobdef;

std::vector <std::string> args;

args.push_back ("2");

namespace sja = saga::job::attributes;

jobdef.set_attribute (sja::description_executable,"/bin/sleep");

jobdef.set_vector_attribute(sja::description_arguments, args);

saga::job job = js.create_job (jobdef);

saga-users@cct.lsu.edu 27

SAGA Manual Using Attributes March 28, 2010

Type Format Example
String as in printf ("%s", val); Hello World
Int as in printf ("%lld", val); 123
Float as in printf ("%lld", val); 1.234E-4
Time as in printf ("%lld", val); Mon Oct 20 11:31:54 1952
Bool True or False True
Enum literal value of the enum Done

Table 1: Available types and the prescribed formatting for the attribute value

6.3.1 Attribute Types

Although all attributes in SAGA are string-based, we distinguish between dif-
ferent types of attributes. The available types and the prescribed formatting
for the attribute values are summarized in Table 1.

Trying to set an attribute which is, for its type, incorrectly formatted, will result
in a ’BadParameter’ exception.

saga-users@cct.lsu.edu 28

SAGA Manual Using URLs March 28, 2010

7 Using URLs

7.1 Quick Introduction

URLs (and URIs, see below) are a dominant concept for referencing application-
external resources. As such, they are also widely used in the Grid world, and
in SAGA. The saga::url class helps to manage such URLs.

7.2 Reference

Prototype: saga::url

namespace saga

{

class url

: public saga::object

{

public:

url (void);

url (std::string const & urlstr);

~url (void);

url & operator= (std::string const & urlstr);

std::string get_string (void) const;

std::string get_url (void) const;

void set_url (std::string const & url);

std::string get_scheme (void) const;

void set_scheme (std::string const & scheme);

std::string get_host (void) const;

void set_host (std::string const & host);

int get_port (void) const;

void set_port (int port);

std::string get_fragment (void) const;

void set_fragment (std::string const & fragment);

std::string get_path (void) const;

void set_path (std::string const & path);

std::string get_userinfo (void) const;

void set_userinfo (std::string const & userinfo);

saga-users@cct.lsu.edu 29

SAGA Manual Using URLs March 28, 2010

saga::url translate (std::string const & proto);

};

std::ostream& operator<< (std::ostream & os,

saga::url const & u);

std::istream& operator>> (std::istream & is,

saga::url & u);

bool operator== (saga::url const & lhs,

saga::url const & rhs);

bool operator< (saga::url const & lhs,

saga::url const & rhs);

}

7.3 Details

In the time of the Internet, there are probably only few people in the first and
second world who are not aware of the concept of URLs. However, many miss
the finer details of the Uniform Resource Locators, and for a good reason: URLs
are designed to hide a number of complexities from the user. In order to make
efficient use of the SAGA API, and of many Grid concepts in general, we will
need a basic understanding of several key elements of URLs8.

7.3.1 The Structure of URLs

RFC 3986[?] defines the generic syntax for URIs (and thus for URLs). A URL
consists of four parts:

<scheme> : <hierarchical part> [? <query>] [# <fragment>]

The scheme defines how the other parts of the URL are interpreted. The re-
maining parts define what resource the URL points to, and possibly how to
access that resource.

The hierarchical part usually contains the following information: userinfo,
host, port, and path. This information specifies where the resource is to be
found.

The saga::url class defines setters and getters for most of these individual
8Technically, a URL is a URI that, “in addition to identifying a resource, [provides] a

means of locating the resource by describing its primary access mechanism (e.g., its net-
work location).” (”Cool URLs don’t change”, http://www.w3.org/Provider/Style/URI) This
document, however, uses the terms URL and URI interchangeably.

saga-users@cct.lsu.edu 30

SAGA Manual Using URLs March 28, 2010

URL elements. When setting one of these elements, SAGA will make sure that
the result is a valid URL—otherwise the setter will decline the operation with
a BadParameter exception:

Code Example

saga::url u ("ftp://remote.host.net:1234/data/old.dat");

u.set_host ("local.host/net");

u.set_path ("/data/new.dat");

Line 3 would result in a BadParameter exception, as the host contains an invalid
character. Line 4 in the example above would change the URL to

ftp://remote.host.net:1234/data/new.dat

7.3.2 URLs in Grids

Now, in Grids we face the problem that different URLs may point to the same
resource. For example, the following two URLs may refer to the same file:

http://data.silo.net/data/joe doe/recent/abc.dat
ftp://data.silo.net/pub/joe doe/recent/abc.dat

How can the SAGA API handle these differences transparently? In short: it
can’t9, however, it can help. For example, it allows to translate URLs from one
scheme to the other. The code snippet below may be able to repeat the printout
from above10:

Code Example

// Translating URLs

saga::url in("http://data.silo.net/data/joe_doe/recent/abc.dat");

saga::url out = in.translate ("ftp://");

std::cout << in.get_string () << std::endl;

std::cout << out.get_string () << std::endl;

Also, SAGA allows you to use the special scheme any:// as a placeholder. If
specified, the SAGA implementation tries to guess the correct scheme, and does
the potentially required URL translation in the backround.

9For a detailed discussion see section 2.11 of the SAGA specification [?].
10Please note that, at the moment, no adaptor implements url::translate().

saga-users@cct.lsu.edu 31

SAGA Manual Using URLs March 28, 2010

HINT:
Please note that URL translation is a non-trivial and error prone pro-
cess, so it is not a good idea to rely on it if you want to keep your
application portable (which is a MUST in Grids!). Wherever possible
stick to the known schemes, and keep your transactions inside a single
scheme and name space.

saga-users@cct.lsu.edu 32

SAGA Manual Using the SAGA-API Packages March 28, 2010

Part II

Using the SAGA-API Packages

As described in the introduction, the SAGA functional packages provide the
programmer with the means to interact with Grid resources. Here, we describe
these packages one by one, starting with a short overview for each, then a
reference section (as C++ declarations of the respective classes and methods),
and some details and examples for each of the classes.

saga-users@cct.lsu.edu 33

SAGA Manual Using the File Package March 28, 2010

8 Using the File Package

8.1 Quick Introduction

The SAGA filesystem package provides an abstraction to remote file systems.
It inherits the SAGA namespace package, so the reader may want to study
Section 10 as well.

File systems provide more than just a namespace: they also provide access
to the contents of files: the saga::filesystem package extends the name
space package by adding read(), write() and seek() to the entries (i.e., to
saga::filesystem::file):

Accessing a file

// allocate a ’large’ buffer statically

char mem[1024];

saga::mutable_buffer buf (mem, 512);

// open a file

saga::url u ("/etc/passwd");

saga::filesystem::file f (u);

// read data into buffer - the first 512 bytes get fill

f.read (buf);

// seek file and buffer

buf.set_data (mem + 512, 512);

f.seek (123, saga::filesystem::Current);

// read again

f.read (buf);

// print what we got

std::cout << mem << std::endl;

return (0);

The saga::buffer class represents the memory the data are written into. The
buffers’ memory management can be controlled, but the above example leaves
everything to the SAGA implementation—for details, see Section 5.

Note that there are more I/O methods available in the filesystem package. They
are, however, mostly provided for optimization, but are really required to make
remote file I/O operations useful.

saga-users@cct.lsu.edu 34

SAGA Manual Using the File Package March 28, 2010

Conceptually, the file remains a namespace entry with added read, write and
seek capabilities. For more information, see the details below, and also the
section ”Namespaces” (Sec. 10).

8.2 Reference

saga::filesystem enums

namespace saga

{

namespace filesystem

{

enum flags

{

Unknown = /* -1, */ saga::name_space::Unknown ,

None = /* 0, */ saga::name_space::None ,

Overwrite = /* 1, */ saga::name_space::Overwrite ,

Recursive = /* 2, */ saga::name_space::Recursive ,

Dereference = /* 4, */ saga::name_space::Dereference ,

Create = /* 8, */ saga::name_space::Create ,

Exclusive = /* 16, */ saga::name_space::Exclusive ,

Lock = /* 32, */ saga::name_space::Lock ,

CreateParents = /* 64, */ saga::name_space::CreateParents ,

Truncate = 128,

Append = 256,

Read = /* 512, */ saga::name_space::Read ,

Write = /*1024, */ saga::name_space::Write ,

ReadWrite = /*1536, */ saga::name_space::ReadWrite ,

Binary = 2048

};

enum seek_mode

{

Start = 1,

Current = 2,

End = 3

};

}

}

Prototype: saga::filesystem::iovec

namespace saga

{

namespace filesystem

{

class const_iovec

: public saga::const_buffer

{

saga-users@cct.lsu.edu 35

SAGA Manual Using the File Package March 28, 2010

public:

const_iovec (void const * data,

saga::ssize_t size,

saga::ssize_t len_in = -1);

~const_iovec (void);

saga::ssize_t get_len_in (void) const;

saga::ssize_t get_len_out (void) const;

};

class iovec

: public saga::mutable_buffer

{

public:

iovec (void * data = 0,

saga::ssize_t size = -1,

saga::ssize_t len_in = -1,

buffer_deleter cb = default_buffer_deleter);

~iovec (void);

void set_len_in (saga::ssize_t len_in);

saga::ssize_t get_len_in (void) const;

saga::ssize_t get_len_out (void) const;

};

}

}

Prototype: saga::filesystem::file

namespace saga

{

namespace filesystem

{

class file

: public saga::name_space::entry

{

public:

file (saga::session const & s,

saga::url url,

int mode = Read);

file (saga::url url,

int mode = Read);

file (saga::object const & o);

file (void);

~file (void);

file & operator= (saga::object const & o);

saga-users@cct.lsu.edu 36

SAGA Manual Using the File Package March 28, 2010

saga::off_t get_size (void);

saga::ssize_t read (saga::mutable_buffer buffer,

saga::ssize_t length = 0);

saga::ssize_t write (saga::const_buffer buffer,

saga::ssize_t length = 0);

saga::off_t seek (saga::off_t offset,

seek_mode mode);

void read_v (std::vector <iovec> buffer_vec);

void write_v (std::vector <const_iovec>

buffer_vec);

saga::ssize_t size_p (std::string pattern);

saga::ssize_t read_p (std::string pattern,

saga::mutable_buffer buffer);

saga::ssize_t write_p (std::string pattern,

saga::const_buffer buffer);

std::vector <std::string>

modes_e (void);

saga::size_t size_e (std::string ext_mode,

std::string specification);

saga::ssize_t read_e (std::string ext_mode,

std::string specification,

saga::mutable_buffer buffer);

saga::ssize_t write_e (std::string ext_mode,

std::string specification,

saga::const_buffer buffer);

};

}

}

Prototype: saga::filesystem::directory

namespace saga

{

namespace filesystem

{

class directory

: public saga::name_space::directory

{

public:

directory (saga::session const & s,

saga::url url,

int mode = ReadWrite);

directory (saga::url url,

int mode = ReadWrite);

directory (saga::object const & o);

saga-users@cct.lsu.edu 37

SAGA Manual Using the File Package March 28, 2010

directory (void);

~directory (void);

directory & operator= (saga::object const & o);

saga::off_t get_size (saga::url url);

bool is_file (saga::url url);

file open (saga::url url,

int flags = Read);

directory open_dir (saga::url url,

int flags = ReadWrite);

}

}

}

8.3 Filesystem Details

The described classes are syntactically and semantically POSIX-oriented [?, ?,
?]. Executing large numbers of simple POSIX-like remote data access opera-
tions is, however, prone to latency-related performance problems. To allow for
efficient implementations, the presented API borrows ideas from GridFTP and
other specifications which are widely used for remote data access. These exten-
sions should be seen as just that: optimizations. Be aware that the SAGA adap-
tors usually implement the POSIX-like read(), write() and seek() methods,
and rarely implement the additional optimized methods (a ’NotImplemented’
exception is thrown if these are not implemented). The optimizations included
here are:

Scattered I/O Scattered I/O operations are already defined by POSIX, as
readv() and writev(). Essentially, these methods represent vector versions of
the standard POSIX read()/write() methods; the arguments are, basically,
vectors of instructions to execute, and buffers to operate upon. In other words,
readv() and writev() can be regarded as specialized bulk methods, which clus-
ter multiple I/O operations into a single operation. The advantages of such an
approach are that it is easy to implement, it is very close to the original POSIX
I/O in semantics, and, in some cases, it is even very fast. The disadvantage is
that for many small I/O operations (a common occurrence in SAGA use cases),
the description of the I/O operations can be larger than the sent, returned or
received data.

Pattern-Based I/O (FALLS) One approach to address the bandwidth lim-
itation of scattered I/O is to describe the required I/O operations at a more

saga-users@cct.lsu.edu 38

SAGA Manual Using the File Package March 28, 2010

abstract level. Regularly, repeating patterns of binary data can be described by
the so-called ’FAmiLy of Line Segments’ (FALLS) [?]. The pattern-based I/O
routines in SAGA use such descriptions to reduce the bandwidth limitation of
scattered I/O. The advantage of such an approach is that it targets very com-
mon data access patterns (at least those commonly found in SAGA use cases).
The disadvantages are that FALLS is a paradigm not widely known or used,
and that FALLS is by definition, limited to regular patterns of data, hence the
inefficiency for more randomized data access.

0 2 64 8 10 12 14 1631 5 7 11 13 15 179

0 21

3 4 5

6 7 8

Figure 1: The highlighted elements are
defined by "(0,17,36,6,(0,0,2,6))".

FALLS was originally introduced for
transformations in parallel computing.
There is also a parallel filesystem which
uses FALLS to describe the file layout.
FALLS can be used to describe regular
subsets of arrays with a very compact syn-
tax.

FALLS patterns are formed as 5-tuples:
"(from,to,stride,rep,(pat))". The
from element defines the starting offset
for the first pattern unit; to defines the
finishing offset of the first pattern unit;
stride defines the distance between con-
secutive pattern units (start to start); and
rep defines the number of repetitions of
the pattern units. The optional 5th el-
ement, pat, allows to define nested pat-
terns, where the internal pattern defines the unit the outer pattern is applied
to (by default it is one byte). As an example, the following FALLS describe the
highlighted elements of the matrix in Fig. 1: "(0,17,36,6,(0,0,2,6))": the
inner pattern describes a pattern unit of one byte length (from 0 to 0), with a
distance of 2 to the next application, and 6 repetitions. These are the 6 bytes
per line which are marked. The outer pattern defines the repeated application
of the inner pattern, starting at 0, ending at 17 (end of line), distance of 36 (to
the beginning of next but one line), and repetition of 6.

Extended I/O GridFTP (which was designed for a similar target domain)
introduced an additional remote I/O paradigm, that of Extended I/O opera-
tions.

In essence, the Extended I/O paradigm allows the formulation of I/O requests
using custom strings, which are not interpreted on the client, but on the server
side; these can be expanded to arbitrarily complex sets of I/O operations. The
type of I/O request encoded in the string is called mode. A server may support
one or many of these extended I/O modes. Whereas the approach is very flexible

saga-users@cct.lsu.edu 39

SAGA Manual Using the File Package March 28, 2010

and powerful and has proven its usability in GridFTP, a disadvantage is that it
requires very specific infrastructure to function, i.e., it requires a remote server
instance which can interpret opaque client requests. Additionally, no client side
checks or optimizations on the I/O requests are possible. Also, the application
programmer needs to estimate the size of the data to be returned in advance,
which in some cases is very difficult.

The three described operations have, if compared to each other, increasing se-
mantic flexibility, and are increasingly powerful for specific use cases. However,
they are also increasingly difficult to implement and support in a generic fash-
ion. It is up to the SAGA adaptors and the specific use cases, to determine the
level of I/O abstraction that serves the application best and that can be best
supported in the target environment.

Enum flags

The enum flags are inherited from the namespace package. A number of file
specific flags are added to it. All added flags are used for the opening of file
and directory instances, and are not applicable to the operations inherited
from the namespace package.

Truncate
Upon opening, the file is truncated to length 0, i.e., a following read()
operation will never find any data in the file. That flag does not apply
to directories.

Append
Upon opening, the file pointer is set to the end of the file, i.e., a following
write() operation will extend the size of the file. That flag does not
apply to directories.

Read
The file or directory is opened for reading—that does not imply the
ability to write to the file or directory.

Write
The file or directory is opened for writing—that does not imply the
ability to read from the file or directory.

ReadWrite
The file or directory is opened for reading and writing.

Binary
Some operating systems (notably windows-based systems) distinguish
between binary and non-binary modes—this flag mimics that behaviour.

saga-users@cct.lsu.edu 40

SAGA Manual Using the File Package March 28, 2010

Class iovec

The iovec class inherits the saga::buffer class, and three additional state
attributes: offset, len in and len out (with the latter one being read-only).
With that addition, the new class can be used very much the same way as the
iovec structure defined by POSIX for readv/writev; the buffer len in is being
interpreted as the POSIX iov len, i.e., the number of bytes to read/write.

If len in is not specified, that length is set to the size of the buffer. For
application-managed buffers, it is a BadParameter error if len in is specified
to be larger than size, (see Section ?? for details on buffer memory management).
Before an iovec instance is used, its len in must be set to a non-zero value;
otherwise its use will cause a BadParameter exception.

After a read v() or write v() operation completes, len out will report the
number of bytes read or written. Before completion, the SAGA implementation
will report len out to be -1.

saga-users@cct.lsu.edu 41

SAGA Manual Using the Replica Package March 28, 2010

9 Using the Replica Package

9.1 Quick Introduction

Another package inheriting the namespace package is the replica management
in saga::replica. It introduces logical files, which are namespace entries that
have a number of locations (URLs) attached pointing to identical physical copies
of the same file. The replica package is again a very simple extension of the
namespace package: the class logical_file is a namespace entry class with a
number of additional methods which allow to manage the list of attached URLs:

Managing replica locations

// open a logical file

saga::url u ("/replica_1");

saga::replica::logical_file lf (u, saga::replica::Create

| saga::replica::ReadWrite);

// Add a replica location, replicate the file

lf.add_location (saga::url ("file://localhost//etc/passwd"));

lf.replicate (saga::url ("file://localhost//tmp/passwd"),

saga::replica::Overwrite);

// list all locations

std::vector <saga::url> replicas = lf.list_locations ();

for (unsigned int i = 0; i < replicas.size (); i++)

{

std::cout << "replica: " << replicas[i] << std::endl;

}

// remove the first location

lf.remove_location (replicas[0]);

Managing replicas is fairly simple, because it only covers methods to list, add,
delete, and update replica locations on logical files. Additionally, logical files and
logical directories can have meta data attached, which are sets of string-based
key-value pairs11:

Managing replica meta data

// open a logical file

saga::url u ("/replica_1");

saga::replica::logical_file lf (u, saga::replica::Create

| saga::replica::ReadWrite);

11For brevity, the example does not distinguish between scalar and vector attributes.

saga-users@cct.lsu.edu 42

SAGA Manual Using the Replica Package March 28, 2010

// get all attributes

std::vector <std::string> keys = lf.list_attributes ();

// print the keys and values

for (unsigned int i = 0; i < keys.size (); i++)

{

std::string key = keys[i];

std::string val;

if (lf.attribute_is_vector (key))

{

std::vector <std::string> vals = lf.get_vector_attribute (key);

val = vals[0] + " ...";

}

else

{

val = lf.get_attribute (key);

}

std::cout << key << " -> " << val << std::endl;

}

The attentive reader will notice that the attribute management is in accordance
with the attribute management part of the SAGA Look & Feel.

9.2 Reference

Prototypes: saga::replica

namespace saga

{

namespace replica

{

namespace metrics

{

char const * const logical_file_modified

= "logical_file.Modified";

char const * const logical_file_deleted

= "logical_file.Deleted";

char const * const logical_directory_created_entry

= "logical_directory.CreatedEntry";

char const * const logical_directory_modified_entry

= "logical_directory.ModifiedEntry";

char const * const logical_directory_deleted_entry

= "logical_directory.DeletedEntry";

}

enum flags

saga-users@cct.lsu.edu 43

SAGA Manual Using the Replica Package March 28, 2010

{

Unknown = /* -1, */ saga::name_space::Unknown ,

None = /* 0, */ saga::name_space::None ,

Overwrite = /* 1, */ saga::name_space::Overwrite ,

Recursive = /* 2, */ saga::name_space::Recursive ,

Dereference = /* 4, */ saga::name_space::Dereference ,

Create = /* 8, */ saga::name_space::Create ,

Exclusive = /* 16, */ saga::name_space::Exclusive ,

Lock = /* 32, */ saga::name_space::Lock ,

CreateParents = /* 64, */ saga::name_space::CreateParents ,

// 128, reserved for Truncate

// 256, reserved for Append

Read = 512,

Write = 1024,

ReadWrite = 1036,

// 2048, reserved for Binary

};

class logical_file

: public saga::name_space::entry,

public saga::attributes

{

public:

logical_file (session const & s,

saga::url url,

int mode = Read);

logical_file (saga::url url,

int mode = Read);

logical_file (saga::object const & o);

logical_file (void);

~logical_file (void);

logical_file & operator= (saga::object const & o);

void add_location (saga::url url);

void remove_location (saga::url url);

void update_location (saga::url old,

saga::url new);

std::vector<saga::url>

list_locations (void);

void replicate (saga::url url,

int flags = None);

};

class logical_directory

: public saga::name_space::directory,

public saga::attributes

{

public:

logical_directory (saga::session const & s,

saga-users@cct.lsu.edu 44

SAGA Manual Using the Replica Package March 28, 2010

saga::url url,

int mode = ReadWrite);

logical_directory (saga::url url,

int mode = ReadWrite);

logical_directory (saga::object const & o);

logical_directory (void);

~logical_directory (void);

logical_directory & operator=(saga::object const& o);

bool is_file (saga::url url);

std::vector<saga::url>

find (std::string name_pattern,

std::vector <std::string> key_pattern,

int flags = Recursive);

saga::replica::logical_file

open (saga::url url,

int flags = Read);

saga::replica::logical_directory

open_dir (saga::url url,

int flags = None);

};

}

}

9.3 Replica Details

saga-users@cct.lsu.edu 45

SAGA Manual Using the Namespace Package March 28, 2010

10 Using the Namespace Package

10.1 Quick Introduction

Namespaces are used for a wide variety of computer subsystems: they are used to
organize files, to manage domain names, web content, etc. Hierarchical names-
paces are prevalent for managing files (indeed, most file systems provide a hier-
archical namespace, the directory tree). SAGA provides the saga::name_space
package to navigate and manipulate such namespaces:

Navigating a name space

#include <saga/saga.hpp>

int main (int argc, char** argv)

{

// open a namespace directory

saga::url u (std::string ("file://localhost/") + getenv ("PWD"));

saga::name_space::directory d (u);

// list the contents

std::vector <saga::url> entries = d.list ();

// print the entries, and their type

for (unsigned int i = 0; i < entries.size (); i++)

{

std::string type;

// get some details for the entry

if (d.is_dir (entries[i]))

{

type = "/";

}

// if a link (symbolic)

else if (d.is_link (entries[i]))

{

type = " -> " + d.read_link (entries[i]).get_string();

}

// print the info

std::cout << entries[i] << type << std::endl;

}

return (0);

}

This is a poor man’s ls! It needs only five SAGA calls, which are all very simple.
Note that a directory has a ‘cwd’, a Current Working Directory. Calling cd()

saga-users@cct.lsu.edu 46

SAGA Manual Using the Namespace Package March 28, 2010

on a directory changes that. Relative file names are always interpreted with
respect to that cwd.

So, the saga::name_space package provides two classes: directory and entry
(note that directory inherits entry). On entries, you can perform copy(),
link(), move(), and remove(). You can also inspect entries, with is_dir(),
is_entry(), is_link() and read_link().

Directories provide the same operations, but with an additional source argu-
ment, as shown below:

entry.copy (target); // copy entry to target
dir.copy (target); // copy dir to target
dir.copy (source, target); // copy dir/source to target

But the directory copy should be recursive, of course:

dir.copy (target, saga::name_space::Recursive);

Additionally, the directory has two open methods:

saga::entry e = dir.open (saga::url (entry_name));
saga::directory d = dir.open_dir (saga::url (dir_name));

10.2 Reference

Prototype: saga::namespace::flags

namespace saga

{

namespace name_space

{

enum flags

{

Unknown = -1,

None = 0,

Overwrite = 1,

Recursive = 2,

Dereference = 4,

Create = 8,

Exclusive = 16,

Lock = 32,

CreateParents = 64

};

}

}

saga-users@cct.lsu.edu 47

SAGA Manual Using the Namespace Package March 28, 2010

Prototype: saga::namespace::entry

namespace saga

{

namespace name_space

{

class entry

: public saga::object,

public saga::monitorable,

public saga::permissions

{

entry (session const & s,

saga::url url,

int mode = None);

entry (saga::url url,

int mode = None);

entry (void);

~entry (void);

// inspection methods

saga::url get_url (void) const;

saga::url get_cwd (void) const;

saga::url get_name (void) const;

saga::url read_link (void) const;

bool is_dir (void) const;

bool is_entry (void) const;

bool is_link (void) const;

// management methods

void copy (saga::url target,

int flags = saga::name_space::None);

void link (saga::url target,

int flags = saga::name_space::None);

void move (saga::url target,

int flags = saga::name_space::None);

void remove (int flags = saga::name_space::None);

void close (double timeout = 0.0);

};

}

}

Prototype: saga::namespace::directory

namespace saga

{

namespace name_space

{

class directory

saga-users@cct.lsu.edu 48

SAGA Manual Using the Namespace Package March 28, 2010

: public saga::name_space::entry

{

public:

directory (session const & s,

saga::url url,

int mode = None);

directory (saga::url url,

int mode = None);

directory (void);

~directory (void);

void change_dir (saga::url target)

std::vector <saga::url>

list (std::string pattern = "*",

int flags = None) const;

std::vector <saga::url>

find (std::string pattern,

int flags = Recursive) const;

saga::url read_link (saga::url url) const;

bool exists (saga::url url) const;

bool is_dir (saga::url url) const;

bool is_entry (saga::url url) const;

bool is_link (saga::url url) const;

unsigned int get_num_entries

(void) const;

saga::url get_entry (unsigned int entry) const;

void copy (saga::url source_url,

saga::url dest_url,

int flags = None);

void link (saga::url source_url,

saga::url dest_url,

int flags = None);

void move (saga::url source_url,

saga::url dest_url,

int flags = None);

void remove (saga::url url,

int flags = None);

void make_dir (saga::url url,

int flags = None);

entry open (saga::url url,

int flags = None);

directory open_dir (saga::url url,

int flags = None);

};

} // namespace_dir

} // namespace saga

saga-users@cct.lsu.edu 49

SAGA Manual Using the Namespace Package March 28, 2010

10.3 Details

The notion of a namespace is shared by several SAGA packages: the file, the
replica and the advert packages. All allow to manage entities which are orga-
nized in a hierarchical namespace. The namespace package is abstracting the
management of that hierarchy, and leaves only the entity specific operations
(File-IO, Replica Management, Advert Creation) to the various packages.

HINT:
Namespace operations handle namespace entries as opaque, and are
never able to look ’inside’. To do that, use one of the derived packages,
which add exactly that functionality, specific to the type of namespace
they represent.

The namespace package introduces two classes: saga::namespace::entry and
saga::namespace::directory (which is an entry, i.e., inherits from entry).
Both classes refer to entities which are specified by a pathname, typically a
URL. Several calls additionally allow to refer to entries with wildcards, similar
to the shell wildcards known by POSIX (see glob(7)) 12.

The namespace package allows to create and delete entries, to copy, move or
link entries, and to inspect entries and directories.

FIXME: add infos about available attributes and metrics

12Namespace entries can also have permissions, just as in most file systems. For details on
permissions, see Section ??.

saga-users@cct.lsu.edu 50

SAGA Manual Using the Job Package March 28, 2010

11 Using the Job Package

11.1 Quick Introduction

For an overwhelming number of use cases, job submission and management is
the most important aspect of Grid computing. The saga::job package provides
the respective functionality. There are four classes:

• saga::job::description
describes the properties of a job to be submitted,

• saga::job::service
represents a service which accepts job descriptions for submission,

• saga::job::job
represents the submitted job, and

• saga::job::self
which represents the application itself.

The most basic code example is the following:

Job submission

#include <saga/saga.hpp>

int main (int argc, char** argv)

{

saga::job::service js;

saga::job::job j = js.run_job ("localhost", "/bin/sleep 3");

j.wait ();

return (0);

}

Yes, it is that easy. But what about the job’s I/O, can we handle that as well?
And what about job state information <F2>? Let’s see:

Job submission and job I/O

saga::job::service js;

saga::job::ostream in;

saga::job::istream out;

saga::job::istream err;

saga::job::job j = js.run_job ("localhost",

"/bin/date",

saga-users@cct.lsu.edu 51

SAGA Manual Using the Job Package March 28, 2010

in, out, err);

saga::job::state state = j.get_state ();

do

{

char buffer[256];

// get stdin

out.read (buffer, sizeof (buffer));

if (out.gcount () > 0)

{

std::cout << std::string (buffer, out.gcount ());

}

if (out.fail ())

{

break;

}

usleep (10000);

state = j.get_state ();

} while (state != saga::job::Done &&

state != saga::job::Failed &&

state != saga::job::Canceled)

That is basically the same as above, but we catch the job’s I/O channel as it is
getting created. The remainder of the example code (lines 12ff) is just watching
the job state and the output stream.

The run_job() method is just a shortcut. It actually provides exactly the
following functionality, just with less code, as the example below:

run job() expanded

namespace sa = saga::attributes;

namespace sja = saga::job::attributes;

std::string exe ("/bin/date");

std::vector <std::string> hosts;

hosts.push_back ("localhost");

saga::job::description jd;

jd.set_attribute (sja::description_interactive, sa::common_true);

jd.set_attribute (sja::description_executable, exe);

saga-users@cct.lsu.edu 52

SAGA Manual Using the Job Package March 28, 2010

jd.set_vector_attribute (sja::description_candidatehosts, hosts);

saga::job::service js;

saga::job::job j = js.create_job (jd);

saga::job::ostream in = j.get_stdin ();

saga::job::istream out = j.get_stdout ();

saga::job::istream err = j.get_stderr ();

// job is in ’New’ state here, we need to run it

j.run ();

saga::job::state state = j.get_state ();

do

{

char buffer[256];

// get stdin

out.read (buffer, sizeof (buffer));

if (out.gcount () > 0)

{

std::cout << std::string (buffer, out.gcount ());

}

if (out.fail ())

{

break;

}

usleep (10000);

state = j.get_state ();

} while (state != saga::job::Done &&

state != saga::job::Failed &&

state != saga::job::Canceled)

This long way exposes some additional details:

• The job_description class allows specifying attributes of the job.13

• The stdio channels of a job can be obtained before the job is running, to
avoid race conditions.

• Only ’Interactive’ jobs will provide stdio channels.
13Only the ’Executable’ attribute is mandatory.

saga-users@cct.lsu.edu 53

SAGA Manual Using the Job Package March 28, 2010

Table 2 shows the job description attributes available in SAGA. Note that these
attributes are closely related to the respective keys of the JSDL standard [?, ?].

Executable string what executable to run
Arguments list of strings the job arguments
CandidateHosts list of strings where to run
SPMDVariation string MPI type (if any)
TotalCPUCount int # CPUs, total
NumberOfProcesses int # processes, total
ProcessesPerHost int # processes per host
ThreadsPerProcess int # threads per process
Environment list of strings environment vars
WorkingDirectory string working directory
Interactive bool usage type
Input string stdin source file
Output string stdout log file
Error string stderr log file
FileTransfer list of strings file staging
Cleanup bool cleanup-after-run
JobStartTime datetime when to start job
TotalCPUTime int how long will job run
TotalPhysicalMemory int memory the job needs
CPUArchitecture string architecture to run on
OperatingSystemType string OS to run on
Queue string queue to submit to
JobContact list of strings notification contact

Table 2: Job description attributes available in SAGA.

The available SPMDVariation values are: MPI, GridMPI, IntelMPI LAM-MPI,
MPICH1, MPICH2, MPICH-GM, MPICH-MX MVAPICH, MVAPICH2, OpenMP, POE, PVM
and None. Other arbitrary values are allowed, and interpreted by the backend.
This attribute indirectly dtermines which mpirun executable should be called
for starting the application, and which parameters it will accept.

Line 10 in the job I/O example above obtains the job state:

saga::job::state state = j.get_state ();

That implies that saga::job is a stateful object. The job state model is shown
in Figure 3, which also shows what method calls cause which state transitions.

saga-users@cct.lsu.edu 54

SAGA Manual Using the Job Package March 28, 2010

CanceledDone

Final State

run()

resume()

suspend()

wait()
intern intern

Initial State

cancel() cancel()
wait() wait() wait()

run_job()create_job()

wait()
intern

New Running Suspended

Failed

Figure 2: The SAGA job state model.

11.2 Reference

Prototypes: saga::job

namespace saga

{

namespace job

{

typedef char const * char ccc_type;

namespace attributes

{

// job description atributes

ccc_type description_executable = "Executable";

ccc_type description_arguments = "Arguments";

ccc_type description_environment = "Environment";

ccc_type description_workingdirectory = "WorkingDirectory";

ccc_type description_interactive = "Interactive";

ccc_type description_input = "Input";

ccc_type description_output = "Output";

ccc_type description_error = "Error";

ccc_type description_filetransfer = "FileTransfer";

saga-users@cct.lsu.edu 55

SAGA Manual Using the Job Package March 28, 2010

ccc_type description_cleanup = "Cleanup";

ccc_type description_jobstarttime = "JobStartTime";

ccc_type description_totalcputime = "TotalCPUTime";

ccc_type description_totalphysicalmemory = "TotalPhysicalMemory";

ccc_type description_cpuarchitecture = "CPUArchitecture";

ccc_type cpuarchitecture_sparc = "sparc";

ccc_type cpuarchitecture_powerpc = "powerpc";

ccc_type cpuarchitecture_x86 = "x86";

ccc_type cpuarchitecture_x86_32 = "x86_32";

ccc_type cpuarchitecture_x86_64 = "x86_64";

ccc_type cpuarchitecture_parisc = "parisc";

ccc_type cpuarchitecture_mips = "mips";

ccc_type cpuarchitecture_ia64 = "ia64";

ccc_type cpuarchitecture_arm = "arm";

ccc_type cpuarchitecture_other = "other";

ccc_type description_operatingsystemtype = "OperatingSystemType";

ccc_type description_candidatehosts = "CandidateHosts";

ccc_type description_queue = "Queue";

ccc_type description_jobcontact = "JobContact";

ccc_type description_spmdvariation = "SPMDVariation";

ccc_type description_totalcpucount = "TotalCPUCount";

ccc_type description_numberofprocesses = "NumberOfProcesses";

ccc_type description_processesperhost = "ProcessesPerHost";

ccc_type description_threadsperprocess = "ThreadsPerProcess";

}

class description

: public saga::object,

public saga::attributes

{

public:

description (void);

~description (void);

};

class service

: public saga::object

{

public:

service (saga::session const & s,

saga::url rm = "");

service (saga::url rm = "");

~service (void);

saga::job::job create_job (description job_desc);

saga::job::job run_job (std::string hostname,

saga-users@cct.lsu.edu 56

SAGA Manual Using the Job Package March 28, 2010

std::string commandline,

ostream & stdin_stream,

istream & stdout_stream,

istream & stderr_stream);

std::vector <std::string>

list (void);

saga::job::job get_job (std::string job_id);

saga::job::self get_self (void);

};

namespace attributes

{

// read only job attributes

ccc_type jobid = "JobID";

ccc_type executionhosts = "ExecutionHosts";

ccc_type created = "Created";

ccc_type started = "Started";

ccc_type finished = "Finished";

ccc_type workingdirectory = "WorkingDirectory";

ccc_type exitcode = "ExitCode";

ccc_type termsig = "Termsig";

}

namespace metrics

{

// job metrics

ccc_type statedetail = "job.StateDetail";

ccc_type signal = "job.Signal";

ccc_type cputimelimit = "job.CPUTimeLimit";

ccc_type memoryuse = "job.MemoryUse";

ccc_type vmemoryuse = "job.VmemoryUse";

ccc_type performance = "job.Performance";

}

enum state

{

// job state

Unknown = saga::task_base::Unknown, // -1

New = saga::task_base::New, // 0

Running = saga::task_base::Running, // 1

Failed = saga::task_base::Failed, // 2

Done = saga::task_base::Done, // 3

Canceled = saga::task_base::Canceled, // 4

Suspended = 5

};

class job : public saga::task,

public saga::attributes,

public saga::permissions,

saga-users@cct.lsu.edu 57

SAGA Manual Using the Job Package March 28, 2010

public saga::sync

{

public:

// no constructor

~job (void);

job & operator= (saga::object const & o);

std::string get_job_id (void);

state get_state (void);

description get_description (void);

ostream get_stdin (void);

istream get_stdout (void);

istream get_stderr (void);

void suspend (void);

void resume (void);

void checkpoint (void);

void migrate (description job_desc);

void signal (int signal);

};

}

}

11.3 Job Details

The SAGA Job API covers four classes: saga::job_description, saga::job -
service, saga::job, and saga::job_self. The job description class is noth-
ing more than a container for a well-defined set of attributes, which, using
JSDL [?, ?] based keys, defines the job to be started, and its runtime and re-
source requirements. The job server represents a resource management endpoint
which allows the starting and insertion of jobs.

The job class itself is central to the API, and represents an application instance
running under the management of a resource manager. The job_self class IS-A
job. Its purpose is to represent the current SAGA application, which allows for
a number of use cases with applications that actively interact with the grid
infrastructure, for example, to migrate itself, or to set new job attributes.

The job class inherits the saga::task class (Sec. ??), and uses its methods to
run(), to wait() for, and to cancel() jobs. The inheritance also allows for the
management of large numbers of jobs in task containers. Additional methods
provided by the saga::job class relate to the Suspended state (which is not
available on tasks), and provide access to the job’s standard I/O streams, and

saga-users@cct.lsu.edu 58

SAGA Manual Using the Job Package March 28, 2010

to more detailed status information. The saga::job iostreams are available
as saga::job::istream and saga::job::ostream instances, which all inherit
from std::stream.

11.3.1 Job State Model

The SAGA job state diagram is shown in Figure 3. It is an extension of the
saga::task state diagram (Figure 4), and extends the state diagram with a
’Suspended’ state, which the job can enter/leave using the suspend()/resume()
calls.

CanceledDone

Final State

run()

resume()

suspend()

wait()
intern intern

Initial State

cancel() cancel()
wait() wait() wait()

run_job()create_job()

wait()
intern

New Running Suspended

Failed

Figure 3: The SAGA job state model extends the SAGA task state model with a ’Suspended’
state, and additional transitions.

SAGA maps the native back-end state model onto the SAGA state model. The
SAGA state model is simple enough to allow a straightforward mapping in most
cases. For some applications, access to the native back-end state model is useful,
though—for that reason, an additional metric named ’StateDetail’ allows to
query the native job state.

State details in SAGA are formatted as follows:

saga-users@cct.lsu.edu 59

SAGA Manual Using the Job Package March 28, 2010

’<model>:<state>’

with valid models being ”BES”, ”DRMAA”, or other implementation specific
models. For example, a state detail for the BES state ’StagingIn’ would be
rendered as ’BES:StagingIn’, and would be a substate of Running. If no state
details are available, the metric is still available, but it has always an empty
string value.

11.3.2 File Transfer Specifications

The syntax of a file transfer directive for the job description is modeled on the
LSF syntax (LSF stands for Load Sharing Facility, a commercial job scheduler
by Platform Computing). It has the general syntax:

local_file operator remote_file

Both the local_file and the remote_file can be URLs. If they are not URLs,
but full or relative pathnames, then the local_file is relative to the host where
the submission is executed, and the remote_file is evaluated on the execution
host of the job.

The operator is one of the following four:

’>’ copies the local file to the remote file before the job starts.
Overwrites the remote file if it exists.

’>>’ copies the local file to the remote file before the job starts.
Appends to the remote file if it exists.

’<’ copies the remote file to the local file after the job finishes.
Overwrites the local file if it exists.

’<<’ copies the remote file to the local file after the job finishes.
Appends to the local file if it exists.

11.3.3 Command Line Specification

The run_job() method of the saga::job_service class accepts a string pa-
rameter which constitutes a command line to be executed on a remote resource.
The parsing of that command line follows the following rules:

• Elements are either delimited by white space (a space, or a tab), or are
delimited by not-escaped double quotes.

• The escape character for double quotes is the backslash (which is also used
to escape the backslash itself).

saga-users@cct.lsu.edu 60

SAGA Manual Using the Job Package March 28, 2010

• The first element is used as the executable name; all other elements are
treated as job arguments.

The following command line parameter

/bin/cp "/tmp/my file with spaces" /data/

is thus invoking the executable /bin/cp, with two arguments.

11.3.4 Job Identifiers

The SAGA JobID is treated as an opaque string in the SAGA API, and is
structured as:

’[backend url]-[native id]’

For example, a job submitted to the host remote.host.net via ssh (whose
daemon runs on port 22), and having the POSIX PID 1234, would get the job
id:

’[ssh://remote.host.net:22/]-[1234]’

The implementation may free the resources used for the job, and hence may
invalidate a JobID after a successful wait on the job, and after the application
received the job status information at least once.

A JobID may be unknown until the job enters the Running state, as the back-
end will often not assign IDs to jobs which are not yet running. In such cases,
the value of the JobID attribute is empty. The job will, however, retain its
JobID after it enters a final state.

saga-users@cct.lsu.edu 61

SAGA Manual Using the Stream Package March 28, 2010

12 Using the Stream Package

12.1 Quick Introduction

(FIXME: english)
Inter-process communication (IPC) is historically central to parallel and dis-
tributed computing, and numerous approaches exist for the wide variety of use
cases. Streams are amongst the most well-known and most simple of these
paradigms, and are also provided by SAGA. The concept is very close to that
of BSD sockets: a stream_service can be listened to (calling serve()), and
a connection client stream results in a stream instances on both ends, upon
which the application can call read() and write():

Stream server

#include <saga/saga.hpp>

int main (int argc, char** argv)

{

// reusable io buffer

saga::buffer buf;

// create a stream_server and listen for clients

saga::stream::server ss (saga::url (argv[1]));

while (1)

{

// wait for incoming client

saga::stream::client s = ss.serve ();

// read data from client

s.read (buf);

}

}

Stream client

#include <saga/saga.hpp>

int main (int argc, char** argv)

{

// create client stream and connect to server

saga::stream::client s (saga::url (argv[1]));

s.connect ();

// send some data

saga-users@cct.lsu.edu 62

SAGA Manual Using the Stream Package March 28, 2010

s.write (saga::buffer ("Hello"));

}

Note that SAGA is silent about the used wire protocol. In particular, server and
client are responsible for picking a compatible transfer mechanism. Also, the
boostrapping mechanism is out of scope in the SAGA stream package, i.e., both
sides need to agree on the URL for the server endpoint out-of-band. Both issues
will be addressed in future SAGA API extensions (message API and advert API
extension).

In particular, for stream-based communication, asynchronous operations and
notifications are extremely useful programming paradigms. Both are provided
within SAGA, more details can be found in the later description of the SAGA
Look & Feel (saga::monitoring and saga::task package).

12.2 Reference

Prototypes: saga::stream

namespace saga

{

namespace stream

{

namespace attributes

{

char const * const stream_bufsize = "Bufsize";

char const * const stream_timeout = "Timeout";

char const * const stream_blocking = "Blocking";

char const * const stream_compression = "Compression";

char const * const stream_nodelay = "Nodelay";

char const * const stream_reliable = "Reliable";

}

namespace metrics

{

char const * const stream_state = "stream.State";

char const * const stream_read = "stream.Read";

char const * const stream_write = "stream.Write";

char const * const stream_exception = "stream.Exception";

char const * const stream_dropped = "stream.Dropped";

char const * const server_clientconnect = "server.ClientConnect";

}

enum state

{

Unknown = -1,

saga-users@cct.lsu.edu 63

SAGA Manual Using the Stream Package March 28, 2010

New = 1,

Open = 2,

Closed = 3,

Dropped = 4,

Error = 5

};

enum activity

{

Read = 1,

Write = 2,

Exception = 4

};

class stream

: public saga::object,

public saga::attributes,

public saga::monitorable

{

public:

stream (saga::session const & s,

saga::url url = saga::url ());

stream (saga::url url);

stream (void);

stream (saga::object const & o);

~stream (void);

stream & operator= (saga::object const & o);

saga::url get_url (void) const;

saga::context get_context (void) const;

saga::context connect (void);

std::vector <activity>

wait (activity what,

double timeout = -1.0);

void close (double timeout = 0.0);

saga::ssize_t read (saga::mutable_buffer buffer,

saga::ssize_t length = 0);

saga::ssize_t write (saga::const_buffer buffer,

saga::ssize_t length = 0);

};

class server

: public saga::object,

public saga::monitorable,

public saga::permissions

{

saga-users@cct.lsu.edu 64

SAGA Manual Using the Stream Package March 28, 2010

public:

server (saga::session const & s,

saga::url url = saga::url ());

server (saga::url url);

server (void);

server (saga::object const & o);

~server (void);

server & operator= (saga::object const & o);

saga::url get_url (void) const;

saga::stream::stream serve (double timeout = 0.0);

void close (double timeout = 0.0);

};

}

}

12.3 Stream Details

The SAGA streams package allows establishing the simplest possible authenti-
cated socket connection, with hooks to support application level authorization,
and encryption schemes. The stream API has the following characteristics:

1. It is not performance-oriented: If performance is required, then it is bet-
ter to program directly against the API’s existing performance-oriented
protocols like GridFTP or XIO.

2. It does not attempt to create a programming paradigm that diverges very
far from baseline BSD sockets, Winsock, or Java Sockets.

This API greatly reduces the complexity of establishing authenticated socket
connections in order to communicate with remotely located components. How-
ever, it provides very limited functionality and is thus suitable for applications
that do not have very sophisticated requirements (as per 80-20 rule). It is
envisaged that as applications become progressively more sophisticated, they
will gradually move to more sophisticated native APIs in order to support those
needs. Later SAGA versions may offer higher level communication abstractions,
such as messages.

12.3.1 Endpoint URLs

The SAGA stream API uses URLs to specify connection endpoints. These URLs
are supposed to allow SAGA implementations to be interoperable. For example,

saga-users@cct.lsu.edu 65

SAGA Manual Using the Stream Package March 28, 2010

the URL

tcp://remote.host.net:1234/

is supposed to signal that a standard tcp connection can be established with
host remote.host.net on port 1234. No matter what the specified URL scheme
is, the SAGA stream API implementation MUST have the same semantics on
an API level, i.e., behave like a reliable byte-oriented data stream.

12.3.2 Usage

Just as for BSD sockets, a stream communication channel is established by cre-
ating a serving part (BSD: listening socket), and a client party (BSD: connecting
socket). After connecting both parties, reading and writing on the stream allows
to exchange data.

Stream example - server side

{

// set up the serving endpoint on port 1234

saga::stream::server server (saga::url ("tcp://localhost:1234"));

// wait for incoming connections

saga::stream stream = server.serve ();

// if one arrived, greet the client

stream.write (saga::buffer ("Hello World!", 13));

}

Stream example - client side

{

// setup stream for the server endpoint

saga::stream::stream (saga::url ("tcp://remotehost:1234"));

// connect to the server

stream.connect ();

// read the greeting message

saga::buffer buf (13);

stream.read (buf);

// print it

std::cout << buf.get_data () << std::endl;

}

saga-users@cct.lsu.edu 66

SAGA Manual Using the Stream Package March 28, 2010

FIXME: add details about async ops, and AAA

saga-users@cct.lsu.edu 67

SAGA Manual Using the RPC Package March 28, 2010

13 Using the RPC Package

13.1 Quick Introduction

Remote Procedure Calls are the second IPC mechanism provided in SAGA. The
respective saga::rpc package is modeled after the GridRPC standard [?]. The
concept could not be simpler: an rpc handle instance (saga::rpc::rpc) has a
single method, call(), which invokes the respective remote operation. The call
accepts a stack of In, Out, and InOut parameters.

13.2 Reference

Prototypes: saga::rpc

namespace saga

{

namespace rpc

{

enum io_mode

{

Unknown = -1,

In = 1,

Out = 2,

InOut = In | Out

};

class parameter

: public saga::mutable_buffer

{

public:

parameter (void * data = 0,

saga::ssize_t size = -1,

io_mode mode = In,

buffer_deleter cb = default_buffer_deleter);

~parameter (void);

io_mode get_mode() const;

};

class rpc

: public saga::object,

public saga::permissions

{

public:

rpc (saga::session const & s,

saga-users@cct.lsu.edu 68

SAGA Manual Using the RPC Package March 28, 2010

saga::url name = saga::url ());

rpc (std::string const & name);

rpc (void);

~rpc (void);

void call (std::vector <parameter> parameters);

void close (double timeout = 0.0);

};

}

}

13.3 Details

The rpc class constructor is used to initialize the remote function handle. Be
aware that this process may involve connection setup, service discovery, and
other remote interactions! In the constructor, the remote procedure to be in-
voked is specified by a URL, with the syntax:

gridrpc://server.net:1234/my_function

with the elements responding to:

gridrpc – scheme – identifying a grid rpc operation
server.net – server – server host serving the rpc call
1234 – port – contact point for the server
my_function – name – name of the remote method to invoke

All elements can be empty, which allows the implementation to fall back to
invoke a default remote method.

Furthermore, the rpc class offers one method, call(), which invokes the remote
procedure, and returns the respective Out and InOut parameters.

Remote Procedure Call Example

{

// initialize the rpc handle

saga::rpc::rpc rm(saga::url ("rpc://remote.host.net:31415/get_pi"));

// initialize the parameter stack

saga::rpc::parameter pi (NULL, -1, saga::rpc::Out);

std::vector <saga::rpc::parameter> parameters;

parameters.push_back (pi);

saga-users@cct.lsu.edu 69

SAGA Manual Using the RPC Package March 28, 2010

// invoke the remote procedure

rm.call (parameters);

// when completed, the output parameters are available

std::cout << "Pi equals " << pi.get_data () << std::endl;

}

The argument and return value handling is very basic, and reflects the tradi-
tional scheme for remote procedure calls, that is, an array of structures act as a
parameter stack. For each element of the vector, the parameter struct describes
its data buffer, the size of that buffer, and its input/output mode.

The mode value has to be initialized for each parameter, and the size and
buffer values have to be initialized for each In and InOut struct. For Out
parameters, size may have the value 0, in which case the buffer must be
un-allocated. The buffer is to be created (e.g., allocated) by the SAGA imple-
mentation upon arrival of the result data, with a size that is sufficient to hold
all result data. The size value is then set by the implementation to be equal
to the allocated buffer size.

HINT:
This argument handling scheme allows efficient (copy-free) passing of
parameters, because the parameter vector are passed by reference.

When an Out or InOut struct uses a pre-allocated buffer, any returned data
exceeding the buffer size are discarded. The application is responsible for speci-
fying correct buffer sizes for pre-allocated buffers; otherwise, the behaviour is in
general undefined. For more details on buffer management, see Section 5 about
buffer management.

saga-users@cct.lsu.edu 70

SAGA Manual Using the Advert Package March 28, 2010

14 Using the Advert Package

14.1 Quick Introduction

14.2 Reference

Prototypes: saga::advert

namespace saga

{

namespace advert

{

namespace metrics

{

char const * const advert_modified

= "advert.Modified";

char const * const advert_deleted

= "advert.Deleted";

char const * const directory_created_entry

= "directory.CreatedEntry";

char const * const directory_modified_entry

= "directory.ModifiedEntry";

char const * const directory_deleted_entry

= "directory.DeletedEntry";

};

enum flags

{

Unknown = /* -1, */ saga::name_space::Unknown,

None = /* 0, */ saga::name_space::None,

Overwrite = /* 1, */ saga::name_space::Overwrite,

Recursive = /* 2, */ saga::name_space::Recursive,

Dereference = /* 4, */ saga::name_space::Dereference,

Create = /* 8, */ saga::name_space::Create,

Exclusive = /* 16, */ saga::name_space::Exclusive,

Lock = /* 32, */ saga::name_space::Lock,

CreateParents = /* 64, */ saga::name_space::CreateParents,

// 256, reserved for Truncate

// 512, reserved for Append

Read = 512,

Write = 1024,

ReadWrite = 1536,

//2048, reserved for Binary

};

class entry

: public saga::name_space::entry,

public saga::attributes

saga-users@cct.lsu.edu 71

SAGA Manual Using the Advert Package March 28, 2010

{

public:

entry (saga::session const & s,

saga::url url,

int mode = Read);

entry (saga::url url,

int mode = Read);

entry (saga::object const & other);

entry (void);

~entry (void);

entry & operator= (saga::object const & object);

void store_object (saga::object object);

saga::object retrieve_object (void);

saga::object retrieve_object (saga::session const & s);

void store_string (std::string str);

std::string retrieve_string (void);

};

class directory

: public saga::name_space::directory,

public saga::attributes

{

public:

directory (saga::session const & s,

saga::url url,

int mode = ReadWrite);

directory (saga::url url,

int mode = ReadWrite);

directory (saga::object const & other);

directory (void);

~directory (void);

directory & operator= (saga::object const & o);

advert::entry open (saga::url url,

int mode = Read);

advert::directory open_dir (saga::url url,

int mode = Read);

std::vector <saga::url>

find (std::string name,

std::vector <std::string> pattern,

int flags = None)

};

}

}

saga-users@cct.lsu.edu 72

SAGA Manual Using the Advert Package March 28, 2010

14.3 Details

saga-users@cct.lsu.edu 73

SAGA Manual Advanced Topics March 28, 2010

Part III

Advanced Topics

saga-users@cct.lsu.edu 74

SAGA Manual Using Asynchronous Operations March 28, 2010

15 Using Asynchronous Operations

15.1 Quick Introduction

All functional SAGA API calls come in three flavours: synchronous, asyn-
chronous, and task versions. The easiest way to understand the relations and
differences between them is to consider that all functional API calls are repre-
sented by stateful tasks (e.g., a file.copy() API call is a task which can be
in Running or Done state).

CanceledDone

Final State

run()

intern intern

construction

Initial State

cancel()
wait()wait()wait()

construction
task::Task task::Async

New Running

Failed

Figure 4: The SAGA task state model.

Figure 4 shows the available task states, and the various possible state transi-
tions. The different SAGA API call invocations are simply representing ways
to create the respective tasks in different states: Synchronous calls create tasks
in a final state (Done or Failed); Asynchronous operations create tasks which
are Running; and the Task version of the calls creates tasks which are New, and
need to be run() to do anything at all:

Asynchronous operations

int main (int argc, char** argv)

{

saga-users@cct.lsu.edu 75

SAGA Manual Using Asynchronous Operations March 28, 2010

// create a file instance

saga::url u (argv[1]);

saga::filesystem::file f (u);

// target dir to copy file to

saga::url tgt ("file://localhost/tmp");

// run file copy in three flavours

saga::task t_1 = f.copy <saga::task::Sync> (tgt);

saga::task t_2 = f.copy <saga::task::Async> (tgt);

saga::task t_3 = f.copy <saga::task::Task> (tgt);

// the three tasks do the same, but t_1 is already done at

// this point, t_2 could still be running, and t_3 did not yet

// start.

// let’s get the async version done:

t_2.wait ();

// now, run and finish the Task version:

t_3.run ();

t_3.wait ();

// all three copies are done here.

}

For convenience, the synchronous version is provided simply as:

f.copy (tgt);

Now, what about the return values? For those, the tasks provide a typed mem-
ber method, get_result(), which can only be called when a task is in a final
state:

Return values for asynchronous operations

int main (int argc, char** argv)

{

// create a file instance

saga::url u (argv[1]);

saga::filesystem::file f (u);

// run method in three flavours

saga::task t_1 = f.get_size <saga::task::Sync> ();

saga::task t_2 = f.get_size <saga::task::Async> ();

saga::task t_3 = f.get_size <saga::task::Task> ();

// let’s get the async version done:

saga-users@cct.lsu.edu 76

SAGA Manual Using Asynchronous Operations March 28, 2010

t_2.wait ();

// now, run and finish the Task version:

t_3.run ();

t_3.wait ();

// all three calls are done here.

ssize_t size;

size = t_1.get_result <ssize_t> ();

size = t_2.get_result <ssize_t> ();

size = t_3.get_result <ssize_t> ();

}

The convenience of the synchronous version above is that it returns the return
value immediately:

ssize_t size = f.get_size ();

15.2 Reference

15.3 Details

saga-users@cct.lsu.edu 77

SAGA Manual Using Monitorables and Notifications March 28, 2010

16 Using Monitorables and Notifications

16.1 Quick Introduction

Monitorables and Metrics

FIXME: fill in

Notifications

Closely related to monitorables and metrics are notifications; they notify the
application of certain events. For example, when a task is done, when it changes
its state, etc. For those events, the application can create and register custom
callbacks:

Notifications on task state changes

#include <saga/saga.hpp>

class my_callback : public saga::callback

{

public:

// cb exits the program with appropriate error code

bool cb (saga::monitorable mt,

saga::metric m,

saga::context c)

{

if (m.get_attribute ("state") == "Done") {

exit (0);

}

if (m.get_attribute ("state") == "Failed") {

exit (-1);

}

// all other state changes are ignored

return true; // keep callback registered

}

}

int main (int argc, char** argv)

{

// run a file copy asynchronously

saga::url u (argv[1]);

saga::filesystem::file f (u);

saga::task t = f.copy <saga::task::Async> (saga::url (argv[2]));

saga-users@cct.lsu.edu 78

SAGA Manual Using Monitorables and Notifications March 28, 2010

// monitor the task state

my_callback cb;

t.add_callback ("state", cb);

// make sure the task finishes

t.wait ();

}

The example above registers a private callback to the "state" metric of the
task. In fact, many SAGA objects (which implement the monitoring interface,
and are thus monitorables) have several metrics, which can be queried by
monitorable.list_metrics().

HINT:
The return value of the callback determines if the callback stays regis-
tered (true) or not (false). This allows for a call-once semantics.

16.2 Reference

16.3 Details

saga-users@cct.lsu.edu 79

SAGA Manual Specifying Security Details March 28, 2010

17 Specifying Security Details

17.1 Quick Introduction

Tight security is arguably one of the most required features of Grid environ-
ments. On the other hand, for the average end user, it is also one of the most
annoying features. That is mostly caused by the confusion about how security
credentials are to be maintained, when and where they are valid, how to choose
between them, etc.

SAGA can alleviate only some of these problems—more standardization work
outside of SAGA is required to be able to simplify credential management fur-
ther.

To understand SAGA’s security model, one needs to consider two concepts:
sessions and contexts; a saga::context simply represents one specific security
credential; a saga::session can have multiple of these contexts attached, and
is defined by the lifetime of the objects and operations using these credentials.

By default, both saga::sessions and saga::contexts are invisible: a default
session is always implicitly created on the SAGA call, and picks up all the
default security credentials your SAGA implementation knows about, such as
your default ssh keys, your default globus proxy (if it was initialized before),
your default Unicore keyring, etc. In most cases, that should allow writting
applications which have no single line of code addressing security explicitly,
which are still secure, as these credentials are used on adaptor level, as needed:

Secure gsiftp file copy

#include <saga/saga.hpp>

int main ()

{

saga::url src ("ssh://remote.host.net/tmp/one.dat");

saga::url tgt ("ssh://remote.host.net/tmp/two.dat");

// do a file copy, using the default globus X509 proxy, in the

// default session

saga::filesystem::file f (src);

f.copy (tgt);

}

On the other hand, it allows simple means of control on which credentials are
to be used for a given operation, as in the following example:

saga-users@cct.lsu.edu 80

SAGA Manual Specifying Security Details March 28, 2010

Secure gsiftp file copy

#include <saga/saga.hpp>

int main ()

{

saga::url src ("ssh://remote.host.net/tmp/one.dat");

saga::url tgt ("ssh://remote.host.net/tmp/two.dat");

// create a new session, no default contexts are attached

saga::session my_session;

// create a new ssh context

saga::context my_context ("ssh");

// point ssh context to a specific ssh key

my_context.set_attribute ("UserCert",

"/home/username/.ssh/id_dsa.special");

// add that context to my session. The session will then

// contain *only* that explicitely added context.

my_session.add_context (my_context);

// create a new file object, in that session

saga::filesystem::file f (my_session, src);

// do a file copy, using the specified ssh key

f.copy (tgt);

}

HINT:
In most cases, the default session is what you want to use; if that does
not work, try to convince your system administrator to configure SAGA
so that the default session works!

Objects created from other objects inherit their session. Asynchronous opera-
tions are living in the session of their spawning objects. A session does not die
when going out of scope, but only when all associated objects and operations
die/finish.

17.2 Reference

17.3 Security Details

saga-users@cct.lsu.edu 81

SAGA Manual Miscellaneous Issues March 28, 2010

18 Miscellaneous Issues

18.1 Primitive Data Types

Alas, the C++ standard does not define all data types needed within SAGA.
For that reason, we provide these types also in the saga namespace. Although
these types should usually map to the native types on the respective platform
the SAGA application is running on, we can only guarantee portability when
using the SAGA provided types.

The types provided by SAGA are:

Primitive types in the saga namespace

namespace saga

{

typedef ... char_t;

typedef ... int8_t;

typedef ... uint8_t;

typedef ... int16_t;

typedef ... uint16_t;

typedef ... int32_t;

typedef ... uint32_t;

typedef ... int64_t;

typedef ... uint64_t;

typedef ... intmax_t;

typedef ... uintmax_t;

typedef ... long_long_t;

typedef ... size_t;

typedef ... ssize_t;

typedef ... off_t;

} // namespace saga

Note that the int64_t and unit64_t are only defined on those platforms which
support 64 bit integers. How the individual types are defined is platform-
dependent, and should not be relied upon. However, they will often be mapped
to the respective Boost types.

saga-users@cct.lsu.edu 82

SAGA Manual Miscellaneous Issues March 28, 2010

18.2 Boost, and C++/TR1

Our implementation relies heavily on Boost [?]. Boost is an open source collec-
tion of state-of-the-art C++ libraries, is highly portable, and is actually thought
to be the playground for upcoming versions of the C++ standard. In fact, all
Boost features visible on the surface of our SAGA implementation (i.e., visible
to the user of SAGA), are features which can already be found in the ’C++
Technical Recommendation 1’ [?], a recent extension of the C++ standard.
However, if your compiler does not support the TR1 extensions yet, Boost is
required to use SAGA. Please refer to the installation manual for details on
Boost.

FIXME: correct?

saga-users@cct.lsu.edu 83

	Introduction
	Getting Started

	Quick Start Guide
	Building and Running your Application
	Building your Application
	Running your Application

	I General SAGA Concepts
	Error Handling
	Quick Introduction
	Reference
	Details

	Using Data Buffers
	Quick Introduction
	Reference
	Details

	Using Attributes
	Quick Introduction
	Reference
	Details

	Using URLs
	Quick Introduction
	Reference
	Details

	II Using the SAGA-API Packages
	Using the File Package
	Quick Introduction
	Reference
	Filesystem Details

	Using the Replica Package
	Quick Introduction
	Reference
	Replica Details

	Using the Namespace Package
	Quick Introduction
	Reference
	Details

	Using the Job Package
	Quick Introduction
	Reference
	Job Details

	Using the Stream Package
	Quick Introduction
	Reference
	Stream Details

	Using the RPC Package
	Quick Introduction
	Reference
	Details

	Using the Advert Package
	Quick Introduction
	Reference
	Details

	III Advanced Topics
	Using Asynchronous Operations
	Quick Introduction
	Reference
	Details

	Using Monitorables and Notifications
	Quick Introduction
	Reference
	Details

	Specifying Security Details
	Quick Introduction
	Reference
	Security Details

	Miscellaneous Issues
	Primitive Data Types
	Boost, and C++/TR1

