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ABSTRACT
Within grid environments, latencies for remote operations
of any kind can, as the number of operations increases, be-
come a dominant factor for overall application performance.
Amongst various approaches for latency hiding, bulk oper-
ations provide one possible solution to reduce latencies for
large numbers of similar operations. The identification of
bulks can, however, pose a non-trivial exercise for applica-
tion developers, often requiring changes to the implemented
remote API, and hence direct code modifications to the ap-
plication themselves.

In this paper we show how bulk operations can be inte-
grated into existing API implementations, and identify the
required properties of the API to make this approach feasi-
ble. We also show that our approach considers any type of
bulk operation, and is independent of the underlying mid-
dleware support for bulks. We further describe a prototype
implementation (within the SAGA C++ reference imple-
mentation effort), and present performance measurements
for bulks of remote file copy operations.

1. INTRODUCTION
Latencies associated with the invocation of remote opera-

tions and inter-process communication can significantly af-
fect application performance in distributed systems [1]. The
relatively small and constant latencies seen in traditional
non-distributed systems, which often don’t require any spe-
cific handling at the application level, can become a serious
issue when dealing with wide area networks, which typically
induce latencies several orders of magnitude larger [1]. One
way to reduce the overall visible latency for an application is
to cluster related remote operations into a single operation,
usually known as a bulk operation. This gain is visible espe-
cially if the application talks to a single middleware service
to perform the required operations.

The application of optimized bulk operations would be
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beneficial to several ongoing grid projects involving mul-
tiple remote file operations, including: (i) petroleum engi-
neering1: working with grid-enabled sensitivity studies of
reservoir simulations the UCOMS project deploys over 1000
simultaneous runs, each run producing around 20Mb data
in 20 files which must be archived before it is analyzed; (ii)
numerical relativity2: a new project to archive black hole
simulation data must cope with, for each run, around 2000
files containing over 50Gb data; (iii) coastal modeling3: the
SCOOP project, working on coastal ocean observing and
prediction systems, using and producing several hundred
files of different sizes from 200kb to 500MB.

To be able to use bulk operation optimization in a dis-
tributed grid environment, some component between the
application and grid middleware layer must have the ca-
pability to cluster different operations into bulk operations.
However, this process will typically need application level
information about (a) operation dependencies, and (b) se-
mantic details of the operations to find ’similar’ operations.
Generally, both types of information are hard to obtain be-
low the application level, hindering the transparent utiliza-
tion of bulk optimizations. In particular, information about
dependencies between operations are usually not explicitly
available: that is one of the reasons why automated paral-
lelization of application code is a very difficult and daunting
task [2]. However, we show that, for some APIs, implicit
information about such dependencies are in fact available,
and can be used for transparent bulk optimizations.

In the following, Section 2 introduces the Simple API for
Grid Applications (SAGA), our use case for these optimiza-
tion efforts. Section 3 describes the notion of asynchronous
operations, and Section 4 identifies required API properties
for transparent bulk optimizations and describes a proto-
type implementation. Section 6 presents initial benchmark
results and evaluates the approach in respect to expected
overhead. After a short presentation of related work in Sec-
tion 7, Section 8 concludes and presents ideas for future
work.

2. GRID API’S – SAGA
Grid APIs, designed for developing grid applications, are

naturally concerned with performance problems introduced

1http://www.ucoms.org/
2http://www.cct.lsu.edu/about/focus/numerical/
3http://scoop.sura.org/
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by latencies associated with remote operations. Such APIs
often expose the means for application level latency hiding,
such as asynchronous operations [3, 4, 5, 6]. In this paper,
asynchronous operations are called tasks. An implicit fea-
ture of such tasks is that concurrently running tasks have
no dependency on each other, the application cannot rely
on any order of execution for individual tasks. As described
later, that implicit knowledge is enough to provide trans-
parent bulk optimization for a number of use cases.

Within the Open Grid Forum (OGF)4, the SAGA API
represents the most application oriented standard layer. The
governing design principle for the SAGA API is the 80:20-
rule: provide 80% of functionality with 20% effort. Instead
of full coverage, SAGA tries to provide 80% of the most used
grid paradigms for scientific applications [7]. Currently, the
SAGA API covers core areas such as file access, replica man-
agement, job submission and control, and data streaming.
Auxiliary SAGA APIs provide a consistent look & feel, as
well as asynchronous operations, notification, and session
management [8].

The 80:20-rule also implies that lower level optimizations,
for example control over cache sizes, are usually not exposed
at the API level. This can have far-reaching implications on
the performance of remote operations, as those can benefit
significantly from latency hiding techniques. Also, several
of the core SAGA use cases require the efficient support for
certain types of operations, such as for bulk job submissions
and bulk file access operations [9]. Hence, the SAGA API
developers need to show that the current specification will
allow for optimized SAGA implementations for these use
cases.

Figure 1: SAGA Architecture: adaptors, loaded at run

time, bind a specific SAGA call to the middleware. The

SAGA engine coordinates adaptor invocation.

The SAGA specification fostered a C++ reference imple-
mentation5, which learns from the architecture of the Grid-
Lab Grid Application Toolkit (GAT) as described in [3] (see
Figure 1). In contrast to the GAT engine (written entirely
in C), the current SAGA engine (in C++) allows for late
binding of middleware plugins (adaptors), and allows fully
asynchronous operations by reflecting the SAGA task model
at the engine level.

4http://www.ogf.org/
5provided at http://forge.gridforum.org/sf/projects/
saga-core-wg

3. ASYNCHRONOUS OPERATIONS IN
SAGA

SAGA defines tasks to represent asynchronous remote op-
erations, and provides task containers to simplify handling
large numbers of simultaneously running tasks. Simulta-
neously running tasks have an undefined order of execution,
and thus can have no dependencies between each other. The
SAGA concept of task containers hence defines, very conve-
niently, a set of non-dependent tasks.

As mentioned earlier, two types of information about re-
mote operations are needed to identify bulk operations: (a)
information about operation dependencies, and (b) seman-
tic information about the individual operations, which are
used to identify those which can be clustered into a bulk.
The SAGA task container obviously allows the retrieval of
the first set of information. What about the second set?

Two details of the SAGA task implementation are rele-
vant for this discussion: the encapsulation of a remote op-
eration in a task, and the binding to middleware executing
that task. The implementation uses a plug-in oriented ar-
chitecture to encapsulate middleware specific functionality
from the SAGA API. These plug-in’s (adaptors) are used
to dispatch individual SAGA API operations to the corre-
sponding middleware. The adaptors, binding to a specific
middleware, are clearly the place to perform possible bulk
optimizations, as any bulk support at the middleware level
can be exploited here explicitly.

Code Example

{
vector <string> files = ...;
saga::task_container tc;

// create file copy tasks
while ( files.size () )
{

saga::file f (files.pop ());
tc.add (f.copy <saga::Task>

("/data/"));
}

// run all tasks
tc.run ();

// wait for all tasks
tc.wait ();

}

Figure 2: Simple example illustrating a implicit bulk
file copy operation in the SAGA C++ reference im-
plementation

The implementation architecture is shown in Figure 1:
there, the SAGA engine selects the correct adaptor at run-
time, and dispatches the method to that adaptor. For this
purpose, meta data information about that method call is
evaluated (what object type is the method called on; is
the call synchronous or asynchronous etc.). It is interest-
ing that similar meta data can be used to recognize sim-
ilar operations, e.g. operations which represent the same
method call on the same object instance! Hence, the fact
that our SAGA implementation has, internally, some means
of method inspection provides the mechanism for obtaining
the additional information needed.

http://www.ogf.org/
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4. BULK OPERATIONS WITHIN THE SAGA
C++ REFERENCE IMPLEMENTATION

4.1 The Big Picture
The code excerpt in Figure 2 shows one way to copy a

large number of files asynchronously into one (local) direc-
tory. As already outlined, due to the general structure of
the SAGA API, and more particularly to the existence of
the task container, SAGA implementations can learn what
operations can be executed in a bulk, and which cannot6.
In our implementation, the application of certain similarity
heuristics identifies similar tasks in a task container.

The bulk construction capabilities provided by the de-
scribed approach are not restricted to operations invoked
from points close together in the code. Since the bulk detec-
tion is performed during the execution of the task container
run() function, our approach works well even if the related
tasks are constructed in distributed points of the code. This
function defines the starting point for the bulk detection re-
gardless of the points in code where the different tasks have
been created.

The main factor of optimzation provided by our approach
stems from avoiding network operations during the invoca-
tion of remote operations. For instance, instead of needing
one network round trip and GSI authorization per file copy
invocation the corresponding bundled bulk will require one
network and one authorization operation only. If several re-
mote services are involved, this gain may be partially com-
pensated, though, since each of these services may add its
own latencies to the overall operation execution time.

This section describes an implementation of optimized
bulk handling, and heuristics to define clusters of similar
tasks to be bulk handled.

Figure 3: Architecture of the automatic bulk han-
dling module

Figure 3 shows the overall schema for the bulk handling
module. The arrows indicate the order of component execu-
tion. The monitoring component can potentially be invoked
after the creation of a task, but usually will only be used
after the task has run.

6It must be noted that the information allows only a very
conservative result – however, by design the SAGA task con-
tainers are especially useful for large sets of tasks, which en-
compasses exactly those use cases where bulk optimizations
are most useful.

The information used for identifying bulk operations (4.2
and 4.3), heuristics applied to this information to identify
bulks (4.4), and execution by the Bulk Execution Entity
(4.5) is described in the following. Fail safety issues are
also discussed in 4.5

4.2 Required API Properties
In the above, two essential pieces of information neces-

sary for bulk optimizations were identified: knowledge about
task (in-)dependencies, and knowledge about semantic task-
similarity. These lead to three API properties which must
be fulfilled to allow transparent implementation of bulk op-
timizations.

4.2.1 Explicit Asynchronous API
For synchronous function calls, the application program-

mer assumes immediate execution, which implies that, apart
from caching, there is no possibility for delayed execution
and latency hiding. Only complex code analysis can reveal
possible task dependencies – in general it is assumed that
all operations must be finished before a new one is started.

Explicitly asynchronous APIs are a precodition for trans-
parent bulk optimizations at runtime, since they provide the
ability to identify candidates for bulk operations. Synchronous
operations are not taken into account during bulk detection.

4.2.2 Information about Task Dependencies
Most APIs with explicit support for bulk optimization,

such as DRMAA [4] and gLite [10], require the application
developer to specify task dependencies, and to bundle only
independent tasks into bulk operations. However, as men-
tioned earlier, any set of tasks running at the same time can
be considered as independent, as tasks, by definition, do not
guarantee any execution order (they are completely asyn-
chronous). For that reason it is possible that external code
analysis tools are able to find task dependencies at compile
time, and are able to perform bulk optimizations (and other
optimizations, such as parallel execution) transparently to
the application programmer.

Further, the concept of a task container in the SAGA API,
which by design allows for multiple simultaneously running
tasks, provides such information implicitly, without the need
for additional pre-processing steps.

Container classes for sets of concurrently running tasks
provide implicit information about independent tasks.

It is obvious that independent tasks which are not man-
aged within a task container cannot benefit from a bulk op-
timization without additional information – pre-processing
provides a more optimal set of independent tasks. That
problem is not solved in our implementation.

4.2.3 Information about Task Similarities
One prominent property of task bulks is that they cluster

semantically similar operations, e.g. many read operations,
to the same file. In fact it would make no sense to clus-
ter, for example, many reads to different files, as that bulk
operation would need to be communicated to all involved
resources, which then could only execute parts of the bulk.
Hence, another requirement is the ability to identify simi-
larities of remote operations. That poses no specific require-
ment to the API itself, but it seems advantageous to have an
implementation which allows for inspection of remote oper-
ations, and which can so gather semantic information about



the operations.
An API implementation should allow inspection of remote

operation requests in order to find semantically similar tasks.
The SAGA engine meets that requirement: all operations

are routed through the engine, and inspection is already per-
formed to route the calls to a ‘suitable’ adaptor. Most adap-
tor based API implementations will have similar schemes in
place, so it seems that plugin oriented API implementations
are likely well prepared to add additional inspection for bulk
analysis.

4.3 Adding Metainformation
As the SAGA engine analyses tasks for similarity, various

meta information attached to the tasks are evaluated, and
heuristics are applied to obtain a similarity measure. The
information required depends mostly on the adopted clus-
tering strategy (see 4.4), but generic descriptive information
(such as function name, parameter values, class names, and
class instances) are usually available and promising candi-
dates. Our implementation adds these information while
encapsulating the operation into its internal task represen-
tation.

4.4 Analyzing & Bundling operations
The Analyzing and Bundling Entity is responsible for ap-

plying clustering heuristics to a given set of tasks. These
heuristics try to determine which tasks are semantically sim-
ilar, using the attached metadata as described above. So far,
the following clustering strategies have proved useful.

4.4.1 Clustering Heuristics
Figure 4 summarizes the different possible clustering heuris-

tics considered during our implementation.

operation class bulk
same same yes
same different no
different same yes
different different no

Figure 4: Similarity cases considered for bulk clus-
tering heuristics

• Same functions – Same API class: the analyzed tasks
encapsulate the same operations, which have been called
on the same API class. All the tasks are considered as
belonging to one bulk bundle.

• Same functions – Different API classes: if the origi-
nating object instances belong to unrelated classes (in
terms of inheritance), tasks are not considered suitable
for bulk optimization. If there is an inheritance rela-
tion between the classes, optimization might be worth-
while – however, this requires runtime reflection mech-
anisms, which are difficult to implement and rarely
portable.

• Different functions – Same API-class: different opera-
tions invoked on the same class type might be called on
the same object, or not. Either way it seems worth-
while to try bulk optimization, as some middleware
allows the execution of different functions on the same
object instance. A good example for that are read()

and readv() on the same file instance.

• Different functions – Different API-class No obvious
relation between different tasks, and they are not con-
sidered suitable for bulk optimization.

4.5 Executing Bulk Operations & Fall-Back
Mechanism

The Bulk Execution Entity (see Figure 3) executes a given
bulk of identified similar tasks. By applying standard adap-
tor selection, an appropriate adaptor is choosen, the bulk is
passed to that adaptor, and is executed. If the execution
of some tasks fails, the bulk execution entity tries to select
another adaptor for the set of failed tasks, which then effec-
tively constitute a new bulk. If all available adaptors have
tried to execute a given task bulk and unexecuted tasks still
remain, the fall-back-mechanism is applied and the tasks
are executed one-by-one. If the middleware does not sup-
port bulk operations, bulk handling will obviously not lead
to any speedup. However, additional latency hiding mecha-
nisms such as parallel task execution are still applicable.

An adaptor to a bulk enabled middlware has, in our im-
plementation, to implement a specific bulk handler to be
called by the Bulk Execution Entity. As seen in Figure 1,
a separate adaptor interface (Capability Provider Interface,
CPI) is already defined, which was easy to extend with such
bulk handlers.

5. THE PROTOTYPE IMPLEMENTATION

5.1 Implementation of Bulks
The described concept for the handling of bulk opera-

tions was implemented within the SAGA C++ reference
implementation (see Section 2). The SAGA engine was ex-
tended to allow the harvesting of semantic information for
the operations encapsuled by the tasks, as motivated above.
The general task model structure needed no change, which
proved, in our opinion, that the design of the SAGA API
does actually allow for bulk optimizations as required by
the SAGA use cases [7, 9].

5.2 Example Bulk Adaptor
The implemented adaptors are used for testing and bench-

marking, and focus on bulk data transfer, because of its
importance for a majority of grid applications. The exam-
ple adaptor interfaces to the GridFTP [11] based GridLab
FileService7. This service offers basic filesystem operations
(e.g. copy, move, remove, change directory etc.) exposed
via a web service interface, and (partly) usable for bulks.

As discussed, a number of changes to the adaptor inter-
face (the CPI in Figure 1) have been necessary: apart from
adding CPI methods to expose the bulk execution part of
the adaptor, it was also necessary to change the parame-
ter passing mechanism. Function call parameters are now
stored within the task class, which allows the adaptor to
extract them as needed, and to pass them to the underlying
middleware. Furthermore, extensions were made to enable
the monitoring of tasks, regardless if they run within a bulk
or as single tasks.

As usual, simplicity and transparency of the API comes
at the cost of complexity of the implementation of the API.
However, API simplicity is the primary goal of the SAGA
design, implementation simplicity is not [7].
7http://www.gridlab.org/WorkPackages/wp-8/
file service/

http://www.gridlab.org/WorkPackages/wp-8/file_service/
http://www.gridlab.org/WorkPackages/wp-8/file_service/


6. RESULTS
It is well known that bulk operations often perform bet-

ter than the corresponding one-by-one serial execution [12].
The implementation described here however adds additional
layers of code for the transparent detection of bulks. This
section discusses the measured overhead of this additional
processing, which we find acceptable if compared to the la-
tencies induced by a single remote operation.

The wall time elapsed for the execution of file copy oper-
ations was measured, both for direct invocation of the bulk
web service interface, and for the indirect invocation via
the complete chain of SAGA calls, task analysis, bulk cre-
ation, adaptor invocation, and finally again service invoca-
tion. The tested code example performs a copy of a variable
number of files (each 1MB) from one remote location to an-
other. The benchmarks were initiated on a laptop computer
(using a wireless network connection), with the Gridlab File
Service running on a remote server in the same LAN. Both
source and destination for the file copy were also located
on two different hosts in the same LAN. The network was
not isolated in any way, and shows random traffic. Figure 5
shows the results.

Note that bulk optimizations target the communication
between client and server, and not the file transfers themself.
Thus, bulk optimizations are typically useful large numbers
of small remote requests, as is the case here (we optimize
the communication of file copy requests). The files copy
operations do barely influence the speedup. For a detailed
performance model for bulk operations, see [13].

Figure 5(a) compares the time needed to copy n (1 . . . 500)
files by directly calling the service interface, with the time
needed to perform the same operations using SAGA. Fig-
ure 5(b) shows the procentual overhead induced by the au-
tomated bulk detection. These benchmarks were performed
under real life conditions (no isolated network, no isolated
servers), the data present the mean of 10 measurements.
The straight line in figure 5(b) shows the linear regression8

for the overhead. As expected, the overhead is zero for sin-
gle tasks (analysis is trivial), and increases steadily with the
number of tasks to analyze. A 12% overhead can be seen
for about 500 tasks.

The latency for the used network is fairly low, so the mea-
sured overhead is a high boundary if compared to real long-
distance networks. As the network latencies increase, the
gain from bundling operations into bulks will increase as
well, as bulk operations decrease the number of network
connection round trip operations.

7. RELATED WORK
Several middleware frameworks offer explicit bulk opera-

tions at the middleware level. For example, the Globus Reli-
able File Transfer (RFT)9 can copy, move and delete several
files at a time. GridFTP10, provides, via its ERET/ESTO
mechanism, for clustering multiple operations into a single
remote request [14]. gLite [10] offers bulk operations for
their client side command-line tools.

Many application level APIs use the collation of individual
operations into bulks as a means of performance optimiza-

8a = 0.03± 0.01, b = −0.9± 3.7
9http://www.globus.org/grid software/data/rft.php

10http://www.globus.org/grid software/data/gridftp.
php
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Figure 5: Benchmark results: direct middleware
bulk operations vs. indirect SAGA initiated bulk
operations. Top: absolute times. Bottom: relative
overhead and regression

tion. We list two example influential APIs for this work,
many others can be found in the literature.

POSIX scattered read and write (readv/readv) are essen-
tially bulk operations. They are used for large numbers of
operations on local files. It is interesting that these calls
implicitly create bulks of seek and of read or write opera-
tions, hence creating bulks with tasks of mixed semantics.
However, that scheme targets one very special (though very
important) use case, and it is not immediately clear if mixed
task bulks are useful or feasible in a more generic context.

The DRMAA API [4] provides support for bulk job sub-
mission in grid environments, with explicit, application level
expression of task dependencies and semantics. In fact, the
DRMAA group in GGF was a major motivating force behind
the bulk optimization efforts in SAGA. We are pleased that
the bulk DRMAA use cases are realisable with the current
SAGA API.

Bulks are not always used for latency hiding – for example,
the motivation to include bulk job submission into DRMAA
was originally to allow for job parametrization.

We have not been able to identify any related work in
terms of automated clustering of asynchronous operations
to enable building of bulks.

http://www.globus.org/grid_software/data/rft.php
http://www.globus.org/grid_software/data/gridftp.php
http://www.globus.org/grid_software/data/gridftp.php


8. CONCLUSIONS & FUTURE WORK
This paper showed that bulk optimizations can be imple-

mented within the SAGA API specification. In particular
the existence of task containers provides the means to iden-
tify independent tasks, and to optimize their execution.

Further, we identified three requirements which, when
met, allow for bulk optimizations in API implementations
without changing the API:

1. the API must be explicitly asynchronous,

2. the API must explicitly or implicitly expose task de-
pendency information,

3. the API implementation must be able to inspect tasks
in order to find similar tasks, in respect to some se-
mantic measurement of similarity.

The described prototype implementation implied several
changes to the SAGA adaptor interface and engine, to sup-
port task analysis and clustering. Given the generic design
of our approach, the bulk optimization can be applied to
any type of operation, while bulk execution is only possible if
middleware support for bulks is available. A fall-back mech-
anism for non bulk-enabled middleware is provided, which
reverts to un-optimized one-by-one execution.

Benchmark runs show that the overhead introduced by
bulk optimization amounts to, as a pessimistic estimate,
about 12% per 500 tasks. Far better results are expected
on long distance networks, and on larger task granularity.

In the near future, we aim to verify our concept of bulk
handling by applying it to other APIs. We would also like
to extend our implementation to include other bulk enabled
middleware. Further we plan to explore mechanisms which
automatically choose between competing bulk-enabled ser-
vices, by evaluating the type of operation to be executed.
That work will increase the amount of data used for the
bulk analysis, with the hope to optimize the bulk detection
heuristics for semantically diverse tasks.
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