
The SAGA C++ Reference Implementation

Lessons Learnt from Juggling with Seemingly Contradictory Goals

Hartmut Kaiser
Center for Computation &

Technology
Louisiana State University

Baton Rouge, Louisiana, USA
hkaiser@cct.lsu.edu

Andre Merzky
Vrije Universiteit, Amsterdam
Amsterdam, The Netherlands

andre@merzky.net

Stephan Hirmer
Center for Computation &

Technology
Louisiana State University

Baton Rouge, Louisiana, USA
shirmer@cct.lsu.edu

ABSTRACT
The Simple API for Grid Applications (SAGA) is an on-
going API standardization effort within the Open Grid Fo-
rum (OGF). OGF strives to standardize grid middleware,
meaning grid service interfaces, grid enabled protocols, and
general grid architecture. Many grid standard specifications
are still in flux, and there are multiple, incompatible grid
middleware systems deployed in research or production en-
vironments. SAGA provides a simple API to programmers
of scientific applications, allowing them to use high level
grid computing paradigms, and providing a shield from the
diversity and dynamicity of grid environments.

The SAGA specification should extend in scope over the
next couple of years, in sync with maturing service specifi-
cations. SAGA is defined in SIDL (a language independent
interface description language), a C++ language binding is
already being developed, language bindings for FORTRAN,
Java, Python and C are planned.

Actually implementing the SAGA API specification is an
interesting and challenging problem itself, due to the ‘dy-
namic’ (or even chaotic) requirements presented by current
grid environments. Nevertheless, the perceived need of the
grid community for a high level API is great enough to tackle
that problem now, and not to wait until the standardiza-
tion landscape settles. This paper describes how the C++
SAGA reference implementation tries to cope with these re-
quirements – we think there are lessons to learn for other
API implementations.

1. INTRODUCTION
With the increasing demand for computational power, the

collaborative use of geographically dispersed computing re-
sources (i.e. computational grids) has become increasingly
popular. Still, relatively few grid-enabled applications exist
that exploit the full potential of grid environments. This is
mainly caused by the difficulties faced by programmers try-
ing to get on top of the related complexities (see section 2).

With the right grid resources and middleware in place,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

research now concentrates on the development of high-level,
application-oriented toolkits that free programmers from the
burden of adjusting their software to different and changing
grids. The Simple API for Grid Applications (SAGA) [1]
is a prominent recent API standardization effort which in-
tends to simplify the development of grid-enabled applica-
tions, even for scientists with no background in computer
science, or grid computing. SAGA was heavily influenced
by the work undertaken in the Gridlab project [2], in par-
ticular by the Grid Application Toolkit (GAT) [3] – one of
the first major attempts to build a high level API to grid
services. The concept of the GAT has proved to be very use-
ful in several projects developing cyberinfrastructures such
as the SURA Coastal Ocean Observing Program (SCOOP),
for instance allowing to build a tool interfacing to a large
data archive [4] using multiple access protocols.

The C++ implementation of the SAGA API presented in
this paper leverages the experience we got from developing
the GAT and will provide a reference implementation for
the OGF standardization process. It also represents a first
attempt to develop the SAGA C++ language bindings. It
has a number of key features, described in more detail later
in the text:

• Synchronous, asynchronous and task oriented versions
of every operation are transparently provided.

• Dynamically loaded adaptors bind the API to the ap-
propriate grid middleware environment, at runtime.
Static pre-binding at link time is also supported.

• Adaptors are selected on a call-by-call basis (late bind-
ing), which allows for adaptors with reduced capabili-
ties, and provides inherent fail safety. A generic object
state repository supports the late binding.

• Latency hiding schemes such as asynchronous opera-
tions and bulk optimizations are generically and trans-
parently applied, even if not explicitly supported by
the adaptors or the middleware.

• A modular API architecture minimizes the runtime
memory footprint.

• API extensions are greatly simplified by the encap-
sulation of a generic call routing mechanism, and by
macros resembling the Scientific Interface Description
Language (SIDL) [5] used in the SAGA specification.

• Strict adherence to Standard-C++ and the utilization
of Boost [6] allows for excellent portability and plat-
form independence.

2. REQUIREMENTS
As mentioned in the introduction, the SAGA C++ ref-

erence implementation must cope with a number of very
dynamic requirements. Additionally, it must provide the
“simple” and “easy-to-use” API the SAGA standard is in-
tended to specify. We describe the resulting requirements
in some detail motivating our SAGA implementation design
described in section 3.

2.1 Dynamic Specification Landscape
The Open Grid Forum (OGF) [7] is an international stan-

dardization body whose primary objective is to define a set
of standards in the emerging field of grid computing. OGF
specifications will cover grid architectures, protocols, inter-
faces, and APIs. However, the whole field is young, and
the complexity of grids is not yet completely understood,
either in terms of academic research or for industrial and
commercial applicability and impact. This fact, along with
the complexity of the problem itself, causes the grid specifi-
cation landscape to evolve slowly: it has several significant
gaps, and it is widely expected that existing specifications
will change [8]. The time needed for grid standards to sta-
bilize is estimated to be 5 to 10 years.

The expectations for grid computing to solve real world
problems remains very high, partly due to the initial enthusi-
asm (or hyping) in the field. This is to the frustration of end
users with distributed environments in general (scalability
and interoperability is still, after many years, a very difficult
problem on many layers). These observations imply the ne-
cessity of an interface abstraction for early adopters shield-
ing the implementers of grid applications from the evolving
grid standardization landscape, and allows for a migration
path to later grid systems with assessable effort.

A SAGA implementation must cope with evolving
grid standards and changing grid environments.

2.2 Evolving SAGA Specification
The SAGA specification itself is currently limited and ex-

pected to expand in scope over time. In particular in re-
spect to new emerging grid service standards it is expected
that new SAGA extensions will be required to provide these
programming paradigms to the application developers. The
general look & feel of the SAGA specification is, however,
thought to be more stable, and there is hope that exten-
sions are merely semantic (new objects, new method calls),
but with limited or no syntactical additions (no change to
the object model, or the task model etc.).

A SAGA implementation must be able to cope with
future SAGA extensions easily, without breaking sup-
port and backward compatibility for early SAGA adop-
ters and applications.

2.3 Evolving Grid Middleware
The evolution of grid standards as described in 2.1 implies

that implementations of these standards are evolving as well,
and very much so. In fact, the major Grid middleware sys-
tem used over the last 8 years or so, Globus [9], went from
version 1.0 to 4.0, thereby undergoing significantly more in-
teroperability breaking updates than the major version num-
bers suggest. Evolutions of other grid middlewares does not
differ in that respect significantly, unless it was developed
for very specific environments and purposes.

These software systems are, on the other hand, large pro-

jects and well funded, and invest significant effort in train-
ing and support. Smaller systems, research developments,
and standard reference implementations have, in general,
the same problem, but much less resources to limit the
impact of that evolution process for the end user. Indus-
trial/commercial implementations with well defined migra-
tion paths and the usually accompanying professional sup-
port are, in reality, to be counted on the fingers of one hand.

Any high level grid API implementation, such as a
SAGA implementation, must shield application pro-
grammers from the evolving middleware implementa-
tions, and in particular should allow various incar-
nations of grid middleware to co-exist.

2.4 Dynamic Grid Environment
As grid middleware evolves, deployed grid environments

face constant changes of middleware deployments (new ver-
sions and services are rolled out frequently, often with un-
clear migration paths). Grid environments are dynamic by
design, with respect to the availability of services and other
resources. Any application designed to run on grids should
be aware of this property, and implement fail safety mech-
anisms, and not rely on the static availability of resources.
Much of that flexibility however can (and should, in our
opinion) be hidden from the application programmer. For
example, an upgrade in a services protocol version should
be handled in the client libraries talking to the service and
not at the application level. Resource discovery, fail safety
on service failures and simple fallbacks such as redundant
service deployments are other examples of mechanisms vital
for grid applications, but should not need explicit reflection
in application code.

A SAGA implementation must allow for and, where
possible, actively support fail safety mechanisms, and
hide the dynamic nature of grid resource availability
from the application.

2.5 Heterogeneous Grid Environment
The dynamicity of grid environments is also reflected in

their (at least potential) heterogeneous nature: although
most deployed grids focus on Linux based clusters, grids
are designed to cope with any OS (real or virtual), on any
resource. The predominance of Linux is rather a indication
of the prematurity of grid middleware developments than an
intentional design artifact.

A SAGA implementation must be portable and, both
syntactically and semantically, platform independent.

2.6 Distributed Grid Applications
Within the domain of distributed applications, which al-

ways imply remote communication, latencies considerations
play a major role in the design and applicability of dis-
tributed concepts. A number of application domains have
emerged which, by loosely coupling distributed components
or utilizing latency hiding techniques, cope very well with
latencies of distributed environments. Latency hiding tech-
niques (such as caches, bulk operations, and interleaving of
computation and communication) often require application
level information to be effective (e.g. concurrency informa-
tion of operations).

A library designed for distributed applications must
allow these and other latency hiding techniques to be
implemented.

2.7 End User Requirements
The SAGA specification was developed based on the re-

sponses to a call for use cases to the grid community [10, 11],
and is designed to meet the resulting end user requirements.

An API implementation must meet other end user
requirements outside the scope of the actual API spec-
ification, such as ease of deployment, ease of config-
uration, documentation, and support of multiple lan-
guage bindings.

If any of these properties is missing, acceptance in the
targeted user community will be severely limited.

3. GENERAL DESIGN
The implementation level requirements of the SAGA ref-

erence implementation as described in the previous section
directly motivating a number of design objectives. Our most
important objective was to design a state-of-the-art Grid
application framework satisfying the majority of user-needs
while remaining as flexible as possible.

This flexibility and extensibility of the implementation,
is then a central to the design, and dominates the overall
architecture of the library (see figure 1). As a summary:
only components known to be stable, such as the SAGA
“look& feel” and the SAGA utility classes, are statically in-
cluded in the library – all other aspects of the API imple-
mentation, such as the core SAGA classes and the middle-
ware compile time and run time bindings, are designed to
be components which can be added and selected separately.

Application

SAGA Engine

SAGA API

SAGA CPI

Middleware

Adaptors

MiddlewareRemote Server

Job

Job

Job

Data

Data

Data

API Packages

API

Figure 1: Architecture: A lightweight engine dis-
patches SAGA calls to dynamically loaded middle-
ware adaptors. See text for details.

3.1 Design Objectives
Although the Simple API for Grid Applications is, by def-

inition simple for application developers, this doesn’t imply
that the implementation itself has to be simple. We made a
major effort to build as much logic and functionality as pos-
sible into the SAGA library core, providing all the needed
common functionality. This enables the user to extend it
with minimal effort. On the other hand, the library is de-
signed to be easy to build, use, and deploy.

As described above, a SAGA implementation must cope
with a multitude of different dynamic requirements. A ma-
jor design objective was to maximize decoupling of different

components of the developed library to provide as much flex-
ibility, adaptability and modularity as possible.

As the SAGA implementation is expected to be used on
different platforms and operating systems we strive for max-
imal implementation portability.

The API should be extensible with minimal effort: ideally,
adding a new API class is orthogonal to all other properties
of the implementation, and immediately benefits from those.

3.2 The Overall Architecture
To meet these goals we decided to decouple the library

components in three dimensions which are now described.
These three dimensions are completely orthogonal – the user
of the library may use and combine these at freely and de-
velop additional suitable components usable in tight inte-
gration with the provided modules.

3.2.1 Horizontal Extensibility – API Packages
The SAGA specification is object oriented and defines a

set of API groups keeping objects of related functionality to-
gether (packages). Our implementation uses this functional
grouping to define API packages. Current packages are:
file management, job management, remote procedure calls,
replica management, and data streaming. Each of these
packages constitutes a separate and independent module.
These modules depend only on the SAGA engine, the user
is free to use and link only those modules actually needed
by the application, minimizing the memory footprint.

New API packages are expected to be added as the SAGA
specification evolves. It is straightforward to add new pack-
ages since all common operations needed inside these pack-
ages (such as adaptor loading and selection, or method call
routing) are imported from the SAGA engine. The creation
of new packages is essentially reduced to:

• add the API (5) package files, and declare the classes,

• reflect the SAGA object hierarchy (more details below,
in section 4.1.2),

• add class methods

The declaration and implementation of the API methods
is simplified by macros, which essentially correspond directly
to the methods SIDL specification (see section 4.6). We are
considering (partly) automating new package generation, by
parsing the SIDL specification and generating the class stubs
and class method specifications. The user then only adds
the required include files for a fully fledged, compilable and
usable SAGA API implementation package. This approach
will also allow us to generate other SAGA language bindings
from the SIDL specification, such as for C and FORTRAN.

We use the Boost.Wave [12] C++ preprocessor and special
#pragmas it provides to pre-generate partially macro ex-
panded sources. This overcomes the disadvantages of plain
macros, simplifying debugging and improving readability.

3.2.2 Vertical Extensibility – Middleware Bindings
A layered architecture (see figure 1) allows us to verti-

cally decouple the SAGA API from the used middleware.
Separate adaptors, either loaded at runtime, or pre-bound
at link time, dispatch the various API function calls to the
appropriate middleware. Usually there will be a separate set
of adaptors for each type of supported middleware. These
adaptors implement a well defined Capability Provider In-
terface (CPI) and expose that to the top layer of the library,

which makes it possible to switch adaptors at runtime and
hence switch between different (and even concurrent) mid-
dleware services providing the requested functionality.

The top library layer dispatches the API function calls
to the corresponding CPI function. It additionally contains
the SAGA engine module, which implements:

• core SAGA objects such as session, context, task or
task container – these objects are responsible for the
SAGA look & feel, and are needed by all API packages;

• common functions to load and select matching adap-
tors, to perform generic call routing from API func-
tions to the selected adaptor, to provide necessary fall
back implementations for the synchronous and asyn-
chronous variants of the API functions (if these are not
supported by the selected adaptor).

The dynamic nature of this layered architecture enables
easy future extensions by adding new adaptors, coping with
emerging grid standards and new grid middleware.

3.2.3 Extensibility for Optimization and Features
Many features of the engine module are implemented by

intercepting, analyzing, managing, and rerouting function
calls between the API packages, (where they are issued)
and the adaptors (where they are executed and forwarded
to the middleware). To generalize this management layer,
a PIMPL [13] (Private Implementation) idiom was chosen,
and is rigorously used throughout the SAGA implementa-
tion. This PIMPL layering allows for a number of additional
properties to be transparently implemented, and experimen-
ted with, without any change in the API packages or adaptor
layers. These features include:

• generic call routing

• task monitoring and optimization

• security management

• late binding

• fallback on adaptor invocation errors

• latency hiding mechanisms

The decoupling of these features from the API and the
adaptors succeeds, essentially, because these properties af-
fect only the IMPL side of the PIMPL layers.

First, the private implementation classes all inherit from
the same base class – only that base class is handled in the
central engine module, so the engine can automatically cope
with new API packages and adaptors. Second, all method
calls are also handled generically in the engine.

The engine module is thus fully generic, and loosely cou-
pled to both the API and adaptor layers. Any changes to the
engine, all optimization, latency hiding techniques, monitor-
ing features etc. can be implemented in the engine generi-
cally, and are orthogonal to the API and adaptor extensions.
Hence, the extensibility of the engine represents the third
orthogonal axis in the libraries extensibility scheme.

4. IMPLEMENTATION CHALLENGES
AND DETAILS

The following section will describe certain implementation
details of the SAGA C++ reference implementation. As will
be described, the implementation gains its flexibility mainly
from the combined application of C++’s compile time and
runtime polymorphism features, i.e. template’s and virtual
functions respective.

4.1 General considerations
To achieve maximum portability, platform independence

and code reuse, the SAGA C++ reference implementation
relies strictly on the Standard C++ language features, and
uses the C++ Standard and Boost libraries where possible.

4.1.1 The SAGA task model
A central concept of the SAGA API design is the SAGA

task model1. That model prescribes the form of synchronous
and asynchronous method calls. Essentially, each method
call comes in three variants: as a synchronous call, as a asyn-
chronous call, and as a task call. The synchronous call is,
as expected, executed immediately. The asynchronous and
task versions of the calls return a saga::task class instance.
A saga::task thus represents an asynchronously running
operation, and has an associated state (New, Running, Fi-

nished, Failed). Task versions of the method calls return
a New task, asynchronous versions return a Running task, i.e.
the run() method was called on that task. For symmetry
reason, we added a fourth version of method calls, which is
again synchronous, but returns a Finished task. The C++
rendering of the SAGA task model is shown in figure 2.

SAGA task model

{
using namespace std;
using namespace saga;

string src = "any://host.net//data/src.dat";
string dest1 = "any://host.net//data/dest1.dat";
string dest2 = "any://host.net//data/dest2.dat";
string dest3 = "any://host.net//data/dest3.dat";
string dest4 = "any://host.net//data/dest4.dat";

file f (src);

// normal sync version of the copy method
f.copy (dest1);

// the three task versions of the same method
task t1 = f.copy <task::Sync> (dest2);
task t2 = f.copy <task::ASync> (dest3);
task t3 = f.copy <task::Task> (dest4);

// task states of the returned saga::task
// t1 is in ’Finished’ or ’Failed’ state
// t2 is in ’Running’ state
// t3 is in ’New’ state

t3.run ();

t2.wait ();
t3.wait ();

// all tasks are ’Finished’ or ’Failed’ now
}

Figure 2: The SAGA task model rendered in C++

While we tried to absolutely minimize the use of tem-
plate’s in the API layer, it was decided to implement the
different flavors of the API functions using function tem-
plates (see figure 2). This makes the whole SAGA C++

1The motivation for this task model is outside the scope of this
paper, but is described in some details in [14]. This paper merely
refers to those aspects relevant to the library design.

implementation generic with respect to the synchronicity
model, being another reason for providing two types of the
synchronous function flavors: a direct and a task based one.

4.1.2 The Object Instance Structure
As already mentioned, the SAGA API objects are imple-

mented using the PIMPL idiom. Their only essential mem-
ber is a boost::smart ptr<> to the base class of the im-
plementation object instance2, keeping it alive. This makes
them very lightweight and copyable without major overhead,
and therefore storable in any type of container.

Task N
(saga::task)

Task 2
(saga::task)

Facade object
(saga::file)

Implementation object
(saga::impl::file)

CPI instance
(default_adaptor::file)

Task 1
(saga::task)

Creation

Strong reference

Weak reference

API objects Implementation objects Adaptor objects

Figure 3: Object instance structure: Copying a API
object instance means sharing state, returned tasks
keep implementation alive.

As shown in figure 3, any API object instance creates the
corresponding impl instance holding all the instance data
of the SAGA object instance (those data defining the state
of the API object instance, such as the name and current
seek position of a file). Copying of a API instance there-
fore shares this state between the copied instances, which is
probably what is expected by a user. Moreover, this behav-
ior is consistent with anticipated handle based SAGA lan-
guage bindings (such as for C or FORTRAN), where copying
the handle representing a SAGA object instance naturally
means sharing the internal instance data as well3.

Due to the shared referencing after copies, the impl in-
stances can be kept alive by objects which depend on their
state – for example, a task keeps the objects alive for which
they represent a asynchronous method call (see figure 3).

The call sequence for creating a SAGA API object in-
stance is shown in figure 4. Whenever needed, the imple-
mentation creates a CPI object instance implemented in one
of the adaptors. The adaptor selection, instantiation, and
creation of the required CPI object instance is implemented
generically in the SAGA engine module and is used by all
API packages. This process is injected into the API pack-
ages by the macros mentioned before (see section 3.2.1).

4.2 Inheritance and PIMPL
An interesting problem in the strict application of the

PIMPL mechanism lies in the API object hierarchy: the

2We refer to the implementation side of the PIMPL layer as impl
classes in this document
3A polymorphic saga::object::clone() method is, however,
part of the SAGA API, and allows for explicit deep copies of
API objects, forcing the instance data to be copied as well.

Facade instance

Implementation

Adaptor selector

CPI instance

Constructor

Select adaptor

Create CPI instance

Constructor

API objects Implementation objects Adaptor objects

Instance creation

Figure 4: Object creation: Sequence diagram de-
picting the creation of all components as showed
in figure 3. Note, how the call is intercepted by
a SAGA engine module component to select a ap-
propriate adaptor.

saga::file class for example inherits the saga::ns entry

class, which inherits the saga::object class. Additionally,
the SAGA specification requires all these classes to imple-
ment additional interfaces. Now, the PIMPL paradigm re-
quires all class instances to own exactly one impl pointer4,
and are built using single inheritance only, otherwise we
would face object slicing problems when copying around the
base classes only. To achieve this in our implementation:

• interfaces are added to the most derived classes by
duplicating the interface functions, simplified by the
usage of macros (interfaces as additional base classes
would break the single inheritance) 5,

• the impl reference is down-casted and passed to the
constructor of the respective base class (for example,
the saga::file construction is shown in figure 5).

saga::file constructor

file::file ([args])
: ns_entry (new saga::impl::file ([args]))

{ }

saga::ns entry constructor

ns_entry::ns_entry (saga::impl::ns_entry* impl)
: saga::object (impl)

{ }

saga::object constructor

object::object (saga::impl::object* impl)
: impl_ (impl)

// impl_ is a boost::smart_ptr<saga::impl::object>
{ }

Figure 5: Realizing inheritance in PIMPL classes
(simplified). Only the saga::object base class owns
an impl pointer.

4In fact the impl pointer stored in any saga::object instance is a
boost::smart ptr<saga::impl::object>, i.e. a reference to the
very base class of the implementation object hierarchy.
5The usage of macros for this isn’t a problem, since, as mentioned
above, these get pre-expanded during the build process.

API classes access the impl pointer through get impl(),
which, in derived classes, implies a static up-cast for the base
class’ impl pointer. As an example, the implementation of
get impl() for saga::ns entry is shown in figure 6.

saga::ns entry.get impl()

boost::shared_ptr <saga::impl::ns_entry>
ns_entry::get_impl (void) const

{
// base class is saga::object
return (boost::shared_ptr <saga::impl::ns_entry>

(this->saga::object::get_impl (),
boost::detail::static_cast_tag ()

));
}

Figure 6: get impl() implies a static cast of the base
class impl pointer.

The implementation objects resemble the API object hi-
erarchy. These are also derived from a common base class
and contain, somewhere in their own hierarchy, similar ob-
jects to the API objects. The saga::impl::file class6 in-
herits the saga::impl::ns entry class, which inherits the
implementation specific saga::impl::proxy class, which is
derived from the common saga::impl::object class. Thus,
the class hierarchy on the implementation side of the PIMPL
paradigm reflects the API side of the class hierarchy, ensur-
ing the correct casting behavior in the get impl() methods.

4.3 State Management
Section 4.1.2 discussed object state, in relation to state

sharing of objects after shallow copies. Here we describe
the object state management of the SAGA implementation
in more detail, since state management is a central element
on several layers. The mentioned state management in the
PIMPL layers provides, as we have seen, for sharing state
between separate API object instances. On a different layer,
the adaptors represent operations on these object instances,
and need to maintain state as well. At the adaptor level this
is complicated by the fact that the object state can (and
in general will) be changed by several adaptors (remember:
adaptors are selected at runtime, and may change for each
API function invocation). For state management, we hence
distinguish between three types of state information.

• Instance data represent the state of API objects (e.g.
file name, file pointer etc.). These are predefined and
not amendable by the adaptor as they represent com-
mon data either passed from the constructor, or needed
for consistent state management on the API level.

• Adaptor data represent the state of CPI objects (e.g.
open connections) and are shared between all instances
of all CPI object types7 implemented by a single adap-
tor and corresponding to a single adaptor instance.
These are naturally implemented by the adaptor writer
as member data of the corresponding adaptor type.

6The saga::impl::file class for example is the implementation
equivalent to the saga::file class, as we kept all API classes in
namespace saga and all corresponding implementation classes in
namespace saga::impl.
7 For instance, the file and directory CPI are commonly imple-
mented by one adaptor.

• Adaptor-instance data represent the state shared be-
tween all CPI instances created for a single API object
and implemented by the same adaptor (e.g. remote
handles). The most natural way were to implement
this type of instance data as members of the corre-
sponding CPI object. Unfortunately this is impossible
since we cannot guarantee that the same CPI instance
will get used for all API function calls on a particular
API object instance (see section 4.4). For this rea-
son these data are stored in a map in the impl object,
identified by a universal unique identifier (UUID) 8.

The lifetime of any type of the state information is main-
tained by the SAGA engine module, which significantly sim-
plifies the writing of adaptors.

All three types of state information must be carefully pro-
tected from race conditions potentially caused by the multi-
threaded nature of the overall implementation. Every adap-
tor needs to access at least one type of these instance data.
Our implementation provides helper classes simplifying the
correct locking of the instance data. Refer to figure 7 for
an example of how to use these predefined wrappers for
accessing the instance data members of a saga::file ob-
ject. The main trick is that the wrapper classes implement
a operator->() returning a pointer to the locked instance
data. This lock is acquired during construction and is re-
leased during destruction of the wrapper instance.

Additionally, uniform state management is important to
provide object state persistency in the future, with minimal
impact on the existing code base.

Instance data type declaration

// file_instance_data can be used for the
// thread safe access to instance data
using namespace saga::adaptors;
typedef instance_data <file_cpi_instance_data>

file_instance_data;

Instance data usage

void file_cpi_impl::sync_read ([args])
{

// ... calculate ’bytes_read’
{

// the constructor aquires a lock
file_instance_data data (this);

// adjust instance data member ’pointer_’
// (seek position) with number of bytes read
data->pointer_ += bytes_read;

} // lock goes out of scope here
}

Figure 7: Definition and use of a wrapper class to
access instance data in a thread safe manner.

4.4 Generic Call Routing
We have already referred to the engines ability to gener-

ically route SAGA API method calls to adaptors. The es-
sential idea of this routing mechanism is to represent these
calls as abstract objects, and to redirect their execution de-
pending on several attributes and the availability of suit-

8All object instances in our SAGA implementation have an asso-
ciated UUID allowing them to be uniquely identified.

able adaptors. For example, an asynchronous method call
for a saga::file instance is preferably directed to a asyn-
chronous file adaptor, or, if such is not available, to a syn-
chronous file adaptor (the method gets executed in a thread
then, making it asynchronous to some extent), or, if that is
not available either, returns an error (NotImplemented).

This routing mechanism allows for

• trivial (synchronous) adaptor implementations,

• late binding: a different adaptor can be selected for
each call, even on the same API object instance,

• variable adaptor selection strategies, e.g. based on
adaptor meta data, user preferences and heuristics,

• latency hiding, e.g. by clustering related method calls
(bulk optimization, see section 4.4.2), or by automatic
load distribution over multiple adaptors (not imple-
mented yet).

Figure 8 depicts the point in the sequence of calls where
this call routing mechanism is injected by the SAGA engine.

CPI function call

Activate adaptor

API objects Implementation objects Adaptor objects

Facade instance Implementation Adaptor selector CPI instance

API function call

impl function call

Select adaptor

Call routing

Routed call
Middleware
invocation

Figure 8: API function call: Diagram illustrating
the execution sequence through the different object
instances during a call to any adaptor supplied func-
tion.

4.4.1 Sync/Async Routing
As the SAGA API methods come in synchronous and

asynchronous flavors (see section 4.1.1), adaptors would nor-
mally need to implement the methods in these two flavors as
well. That, however, has been avoided by providing fallback
implementations in the SAGA engine, if needed. The syn-
chronous behavior is very easy to model: the asynchronous
implementation has to be executed and waited for. The
asynchronous behavior however requires the synchronous
implementation to be wrapped into a thread. That thread
then represents the asynchronous remote operation – inter-
nally, that thread is represented as a saga::impl::task in-
stance. The realization of the saga::impl::task class bases
on a implementation of the futures paradigm, a concurrency
abstraction first proposed for MultiLisp [15].

It must be noted that this mechanism has a number of
drawbacks: (a) the operation is not really asynchronous, as
for example a dropped connection will likely cause it to fail;
(b) the CPI instance executing the method still blocks (it is
synchronous), which can, if badly implemented, cause locks
on shared data structures; (c) the SAGA task model is, at
some point in the future, to be extended, and tasks are then
supposed to be able to survive an application life time – that
would break the current implementation.

However, the mechanism allows simplifying adaptor im-
plementations greatly, as most of the current existing grid
middleware is not fully asynchronous anyway.

4.4.2 Bulk optimizations
Bulk optimizations represent a special form of latency hid-

ing: multiple related, independent method invocations are
clustered into a single call. That reduces the amount of
remote communication needed to execute that method. A
very common example is the execution of multiple remote
I/O operations, which can be clustered in a single operation
(the POSIX scattered I/O, readv/writev (2), have a simi-
lar objective). Our implementation allows to combine tasks
which are collectively run in a task container (see figure 9 for
an example) to be clustered according to the method signa-
ture (e.g. same methods on the same object instance form
one bulk), and can then passed to adaptors implementing
bulk versions of that method [16]. If that bulk version is
nowhere implemented, the methods are called one-by-one,
as would be the default.

Usage of SAGA task container

{
using namespace std;
using namespace saga;
using namespace boost::assign;

string src ("any://host.net//data/src.dat");
file f (src);

vector <string> dest;
dest += "any://host.net//data/dest1.dat",

"any://host.net//data/dest2.dat",
"any://host.net//data/dest3.dat",
"any://host.net//data/dest4.dat";

// create a saga::task_container
task_container tc;

vector <string>::iterator end = dest.end ();
for (vector <string>::iterator it = dest.begin ();

it != end; ++it)
{

// add ’New’ tasks to the task_container
tc.add (f.copy <task::Task> (*it));

}

// run all tasks, then wait for all
// bulk optimization is applied here.
tc.run ();
tc.wait ();

// all tasks are ’Finished’ or ’Failed’ now
}

Figure 9: Usage of the SAGA task container class:
This example illustrates, how the SAGA C++ im-
plementation provides a simple and natural way to
integrate grid related remote operations with well
known C++ paradigms.

4.5 Adaptor Selection
The selection of suitable adaptors at runtime represents

is a central component in the represented library implemen-
tation (see figure 8). It is, in general, a very simple mech-
anism: on loading, the adaptor components register their
capabilities in the adaptor registry. If a method is to be

executed, the adaptor selector searches that registry for all
adaptors implementing that methods capability. All suit-
able adaptors are then ordered (best/most suitable first),
and are tried one-by-one, until the method invocation suc-
ceeds. The adaptor selection again is routed through SAGA
engine components, generically implementing this for any
function to be routed to a CPI instance.

Now, that simple mechanism has a number of potential
pitfalls. For one, as can be seen in figure 4, a number of
adaptor instances (i.e. CPI instances) must be created.
That can imply remote operations, and hence additional
latencies. Secondly, the ordering of adaptors is very dif-
ficult, as it is hard to specify what constitutes a good or
suitable adaptor. One metric is of course the availabil-
ity of the required capability. Another utilized metric is
the preference of adaptors providing the correct flavor (syn-
chronous/asynchronous implementation).

Our library however allows adaptors to specify additional,
key/value based meta data, and also allows to exchange the
adaptor selection component. That way it is possible to (a)
add additional meta data to adaptors (e.g. ’secure=yes/no’,
or ’type=local/remote’), and (b) add selection mechanism
which evaluate and honor these meta data.

We apply a very simple optimization to the described
scheme: if an adaptor was successfully invoked for an ob-
jects method call, the same adaptor is tried first on the next
method call on the same object. That way, the adaptor se-
lection is performed only once (on creation creation), and
only repeated if any method invocation fails.

4.6 Utilization of Macros
Our SAGA implementation makes extensive use of C++

preprocessor macros. This might be perceived as a design
flaw, at least by some readers, and we were very hesitant to
utilize macros extensively. However, the benefits for the end
user and other programmers(!) seem currently to outweigh
the problems, such as limited debugging abilities9. We use
macros in three different functions: for defining the API,
for implementing API level interfaces, and for implementing
the API on the implementation side of the PIMPL layer.

Figure 10 shows a part of the SAGA API definition in
Scientific IDL (SIDL, [5]). The second part of the same fig-
ure shows the representation of the same SIDL segment in
our implementation: the class depicted there is essentially
complete! Adding a new API package can be done in min-
utes, and, in fact, is easy to automate (see section 3.2.1).
The macros expand to all required flavors of the API (syn-
chronous, asynchronous, task based, and task based syn-
chronous – see section 4.1.1). The implementation macros
retrieve the impl pointer via get_impl() (see sec 4.1.2), and
invoke the respective impl method. Macros are also used to
define and implement SAGA interfaces.

On the implementation side, the API is again specified
and implemented by macros – these macros expand to im-
plementations invoking the generic call routing described in
section 4.4. That way, the impl classes are similarly thin and
lightweight as the API itself. The examples in figure 10 do
not show that the definition of the CPI are done by similar
macros – these macros define an abstract base class, which

9As mentioned in section 3.2.1, we are using Boost.Wave features
to pre-generate partially macro expanded sources to overcome the
disadvantages of plain macros, hence simplifying debugging and
improving readability.

saga::file in SIDL

class file : extends saga::ns_entry,
implements-all saga::monitorable

{
// ctor and dtor removed in this example
is_file (in int flags = None,

out bool test);
read (inout array<byte> buffer,

in int len_in,
out int len_out);

...
}

saga::file in C++ Macros

// file.hpp
class file : public saga::ns_entry
{

protected:
boost::shared_ptr <impl::file> get_impl () const;

private:
PRIV_MONITORABLE;
PRIV_0 (bool, is_file, int);
PRIV_2 (ssize_t, read, char*, size_t);
...

public:
PUB_MONITORABLE;
PUB_1_DEF_1 (bool, is_file, int, None);
PUB_2_DEF_0 (ssize_t, read, char*, size_t);
...

}

// file.cpp
IMPL_MONITORABLE;
IMP_1 (file, bool, is_file, int);
IMP_2 (file, ssize_t, read, char*, size_t);
...

saga::impl::file in C++ Macros

// impl/file.hpp
class file : public saga::impl::ns_entry
{

public:
IMP_DECL_MONITORABLE;
IMP_DECL_1 (bool , is_file, int);
IMP_DECL_2 (ssize_t, read, char*, size_t);
...

}

// impl/file.cpp
IMP_IMPL_MONITORABLE;
IMP_IMPL_1 (file, file_cpi, bool, is_file, int);
IMP_IMPL_2 (file, file_cpi, ssize_t, read, char*,

size_t);
...

Figure 10: Macro based API definition and imple-
mentation (macro names abbreviated)

is then implemented by the adaptors, essentially implement-
ing the original SAGA API, and providing the required grid
capabilities.

Our implementation uses macros in well defined locations,
and they allow for simple extensibility of the API. In fact,
we consider the usage of our SAGA implementation to im-
plement other APIs for distributed systems, and also to
re-implement earlier grid APIs for backward compatibility
(such as GAT) – the macros as shown, and the generic call
routing, make that a very simple exercise.

5. LESSONS LEARNT –
IMPLEMENTATION PROPERTIES

Thus far, this paper has motivated the design objectives of
the SAGA C++ Reference implementation, and described
several implementation techniques used to meet these objec-
tives. This section will summarize the resulting properties
of the SAGA implementation from an end user perspective,
and motivate further developments and extensions.

5.1 Uniformity over Programming Languages
The SAGA API specification is language independent –

however the goal is to define language bindings which pro-
vide both a language-native look & feel to the API user, and
strive for syntactic and semantic similarity over all SAGA
language bindings. One of the consequences of this goal is
that the API specification does not use templates, which
were thought too difficult to express uniformly over many
languages. Also, the specification tries to be concise about
object state management, and hence also expresses seman-
tics for shallow and deep copies.

Our implementation follows the SAGA API specification
closely. It is also designed to accommodate wrappers in
other languages, to provide the same semantics, and similar
look & feel to other language bindings. A Python wrapper
for our library is in alpha status, and we plan to add similar
thin wrappers to provide bindings to C, FORTRAN, Perl,
and possibly others.

From another point of view, we find it extremely con-
venient to be able to implement adaptors in different lan-
guages. The Grid Application Toolkit (GAT, [3]), a C-based
API predecessor of SAGA, already allows adaptors in differ-
ent languages, and we may implement similar mechanisms
to allow Python or C based adaptors for this SAGA imple-
mentation as well. In particular Python based adaptors have
been extremely useful for rapid prototyping of middleware
bindings for GAT.

5.2 Genericity in respect to Middleware, and
Adaptability to Dynamic Environments

The dynamicity of grid middleware has already been men-
tioned, as a central dominating property of grid environ-
ments. This is addressed in our implementation by the
described adaptor mechanism which binda to diverse mid-
dleware. Additionally, late binding, fall back mechanisms,
and flexible adaptor selection allow for additional resilience
against an dynamic and evolving run time environment. It
should be noted, however, that adaptors need to deploy
mechanisms like resource discovery, and need to implement
fully asynchronous operations, if the complete software stack
is to be able to cope with dynamic grids – our SAGA imple-
mentation usability will be severely impacted if the quality
of adaptors undermines the libraries mechanisms.

5.3 Modularity makes the Implementation
Extensible

Section 4.6 described how the SAGA implementation will
be able to cope with the expected evolution and extension of
the SAGA API. Further, the adaptor mechanism allows for
easy extensions of the library, to provide additional middle-
ware bindings. In fact, the major future work for our SAGA
implementation will be to provide multiple sets of stable
adaptors for the major grid environments. We expect, how-

ever, that this task requires massively more effort than the
implementation of the presented library, and we hope that
grid middleware vendors will be motivated to support and
maintain these adaptors. Ideally, middleware vendors will
implement adaptors for SAGA, and deliver them as part of
their client side software stack in the same way they provide
MPI implementations. This would be a major step towards
wide spread grid applications.

5.4 Portability and Scalability
Heterogeneous distributed systems naturally require por-

table code bases. We think that our library implementation
is in fact very portable, as we strictly adhere to the C++
standard and portable libraries. In fact, we currently de-
velop the library on Windows and Linux concurrently, so
we are confident that we are able to cover the two major
target platforms without any problems – but we don’t ex-
pect (and currently don’t encounter) any problems on other
platforms. It must be noted, however, that the portability
of our SAGA implementation depends on the portability of
the adaptors, and hence on the portability of the grid mid-
dleware client interfaces, being the much greater problem if
compared to the library code itself.

Distributed applications are often sensitive to scalability
issues, in particular in respect to remote communications.
As SAGA introduces a number of communication mecha-
nisms, scalability concerns are naturally also raised in re-
spect to SAGA implementations. First, the SAGA API is
not targeting high performance communication schemes, but
tries to stick to simple communication paradigms – in no
sense does SAGA intend to replace MPI or other distributed
communication libraries. Having said that, our design allows
for zero-copy implementations of the SAGA communication
APIs, and also allows for fast asynchronous notification on
events – both are deemed critical for implementing scalable
distributed applications.

5.5 Simplicity for the End User
SAGA is designed to be simple to use. However, sim-

plicity of use of an API is not only determined by its API
specification, but also by its implementation: simple de-
ployment and configuration, resilience against lower level
failures, adaptability to diverse environments, stability, cor-
rectness, and peaceful coexistence with other programming
paradigms, tools and libraries are some of the characteristics
which need attention while implementing the SAGA API.

It is a challenge to keep a library implementation, such as
this one, ifself simple, with readable code. Again, a modular
approach helps here. For example, it is simple to hide the
generic call routing, or the adaptor selection, in the engine
module, as these features are not usually exposed to the user
or adaptor programmer. However, we believe that modeling
these central properties as modules increases the readability
and maintainability of the code significantly.

The SAGA API implicitly introduces a concurrent pro-
gramming model, due to its notion of asynchronous oper-
ations, or tasks. The C++ language binding of the API,
and our implementation, allows to combine that model with
arbitrary mechanisms for managing concurrent program el-
ements (i.e. to ensure object state consistency in all circum-
stances, to ensure thread safety, and to allow for application
level semaphores and mutexes).

6. FUTURE WORK
As mentioned, work on appropriate middleware adaptors

will undoubtedly require significant resources in the future
– but without those, the SAGA API will not be usable in
real grid environments. This motivates us to work now on
simplifying adaptor creation, integration and maintenance,
and seek support and contributions from the OpenSource
community, and from grid middleware vendors. We deem
adaptor development and support to be now more important
than the API development itself.

In parallel, we will develop other language bindings for our
implementation, as motivated in section 5.1, and the mecha-
nisms to allow adaptors in various programming languages.
Finally, we plan to apply further generic latency hiding tech-
niques, and to experiment with other API implementations
in our framework.

7. CONCLUSION
We have described the C++ reference implementation of

the SAGA API, which is designed as a very generic and
extensible framework: it allows for very simple extension
of the SAGA API (and in fact is easily usable for other
APIs); it allows for run-time extension of middleware bind-
ings, which is essential for nowadays grid environments; and
it allows for orthogonal optimizations and features, such as
late binding, diverse adaptor selection strategies, and la-
tency hiding techniques. We described the used techniques
enabling these features, amongst them the application of the
PIMPL paradigm for a complete class hierarchy, generic call
routing, and extensive use of C++ preprocessor macros for
API definitions.

These implementation techniques incur a certain over-
head, however, in grid environments the runtime overhead
is usually vastly dominated by communication latencies, so
that this overhead does not matter. The lesson to be learned
is that distributed environments allow for fancy mechanisms,
which would be too expensive in local environments. Fail
safety and latency hiding mechanisms are enormously more
important than, for example, virtual functions, late binding,
and additional abstraction layers. In that sense, we hope
that the presented library is of use to other implementors of
distributed applications.

The source code of this library is freely available under
the Boost license, and can be accessed via anonymous CVS
- details can be found on http://wiki.cct.lsu.edu/saga/.

8. ACKNOWLEDGMENTS
We thank Thorsten Schütt for his work on Futures; Michel

Zsandstra and Vladimir Prus for their initial work on dy-
namic loading; the SAGA groups in OGF for their work
on the SAGA specification; the Center for Computation &
Technology at Louisiana State University, the Vrije Univer-
siteit Amsterdam, and the XtreemOS project for funding
our work.

9. ADDITIONAL AUTHORS
Gabrielle Allen

Center for Computation & Technology
Louisiana State University
Baton Rouge, Louisiana, USA
email: gallen@cct.lsu.edu

10. REFERENCES
[1] SAGA Core Working Group. Simple API for Grid

Applications – API Version 1.6. Technical report,
OGF, 2006.
http://forge.ggf.org/sf/projects/saga-core-wg.

[2] Gridlab: A Grid Application Toolkit and Tsetbed.
http://www.gridlab.org/.

[3] Gabrielle Allen, Kelly Davis, Tom Goodale, Andrei
Hutanu, Hartmut Kaiser, Thilo Kielmann, Andre
Merzky, Rob van Nieuwpoort, Alexander Reinefeld,
Florian Schintke, Thorsten Schütt, Ed Seidel, and
Brygg Ullmer. The Grid Application Toolkit: Towards
Generic and Easy Application Programming Interfaces
for the Grid. Proceedings of the IEEE, 2004.

[4] Dayong Huang and Gabrielle Allen and Chirag Dekate
and Hartmut Kaiser and Zhou Lei and Jon MacLaren.
getdata: A Grid Enabled Data Client for Coastal
Modeling. In High Performance Computing
Symposium (HPC 2006), April 3–6 2006.

[5] Babel Project. Scientific Interface Definition Language
(SIDL).
http://www.llnl.gov/CASC/components/babel.html.

[6] Boost C++ libraries. http://www.boost.org/.

[7] Open Grid Forum (OGF). http://www.ogf.org/.

[8] OGSA Working Group. Defining the Grid: A
Roadmap for OGSA Standards. Technical report,
Open Grid Forum, September 2005. GFD.53.

[9] The Globus Alliance. http://www.globus.org/.

[10] Andre Merzky and Shantenu Jha. A Requirements
Analysis for a Simple API for Grid Applications.
Technical report, Open Grid Forum, May 2006.
GFD.71.

[11] Andre Merzky and Shantenu Jha. Simple API for
Grid Applications – Use Case Document. Technical
report, Open Grid Forum, March 2006. GFD.70.

[12] Hartmut Kaiser. Boost.Wave: A Standard Compliant
C++ Preprocessor Library.
http://www.boost.org/libs/wave/index.html.

[13] Herb Sutter. Pimples–Beauty Marks You Can Depend
On. C++ Report, 10(5), 1998.
http://www.gotw.ca/publications/mill04.htm.

[14] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thilo
Kielmann, Pascal Kleijer, Gregor von Laszewski,
Craig Lee, Andre Merzky, Hrabri Rajic, and John
Shalf. SAGA: A Simple API for Grid Applications –
High-Level Application Programming on the Grid.
Computational Methods in Science and Technology:
special issue ”Grid Applications: New Challenges for
Computational Methods”, 8(2), SC05, November 2005.

[15] R. H. Halstead Jr. Multilisp: A language for
concurrent symbolic computation. Transactions on
Programming Languages and Systems, 7(4):501–538,
October 1985.

[16] Stephan Hirmer, Hartmut Kaiser, Andre Merzky,
Andrei Hutanu, and Gabrielle Allen. Seamless
Integration of Generic Bulk Operations in Grid
Applications. In Submitted to International Workshop
on Grid Computing and its Application to Data
Analysis (GADA’06), Agia Napa, Cyprus, 2006.
Springer Verlag.

http://wiki.cct.lsu.edu/saga/
http://forge.ggf.org/sf/projects/saga-core-wg
http://www.gridlab.org/
http://www.llnl.gov/CASC/components/babel.html
http://www.boost.org/
http://www.ogf.org/
http://www.globus.org/
http://www.boost.org/libs/wave/index.html
http://www.gotw.ca/publications/mill04.htm

	Introduction
	Requirements
	Dynamic Specification Landscape
	Evolving SAGA Specification
	Evolving Grid Middleware
	Dynamic Grid Environment
	Heterogeneous Grid Environment
	Distributed Grid Applications
	End User Requirements

	General Design
	Design Objectives
	The Overall Architecture
	Horizontal Extensibility -- API Packages
	Vertical Extensibility -- Middleware Bindings
	Extensibility for Optimization and Features

	Implementation Challenges and Details
	General considerations
	The SAGA task model
	The Object Instance Structure

	Inheritance and PIMPL
	State Management
	Generic Call Routing
	Sync/Async Routing
	Bulk optimizations

	Adaptor Selection
	Utilization of Macros

	Lessons Learnt -- Implementation Properties
	Uniformity over Programming Languages
	Genericity in respect to Middleware, and Adaptability to Dynamic Environments
	Modularity makes the Implementation Extensible
	Portability and Scalability
	Simplicity for the End User

	Future Work
	Conclusion
	Acknowledgments
	Additional Authors
	References

