
doi: 10.1098/rsta.2009.0051
, 2595-2606367 2009 Phil. Trans. R. Soc. A

Andre Luckow, Shantenu Jha, Joohyun Kim, Andre Merzky and Bettina Schnor

exchange simulations−Adaptive distributed replica

References
l.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/367/1897/2595.ful

 This article cites 13 articles

Rapid response
1897/2595
http://rsta.royalsocietypublishing.org/letters/submit/roypta;367/

 Respond to this article

Subject collections

 (19 articles)software �
 (1 articles)molecular computing �

collections
Articles on similar topics can be found in the following

Email alerting service herein the box at the top right-hand corner of the article or click
Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to

This journal is © 2009 The Royal Society

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/content/367/1897/2595.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/letters/submit/roypta;367/1897/2595
http://rsta.royalsocietypublishing.org/cgi/collection/molecular_computing
http://rsta.royalsocietypublishing.org/cgi/collection/software
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;367/1897/2595&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/367/1897/2595.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
Adaptive distributed
replica–exchange simulations

BY ANDRE LUCKOW
1, SHANTENU JHA

2,3,4,*, JOOHYUN KIM
2,

ANDRE MERZKY
2

AND BETTINA SCHNOR
1

1Institute of Computer Science, Potsdam University, 14482 Potsdam, Germany
2Center for Computation and Technology, and 3Department of Computer

Science, Louisiana State University, Baton Rouge, LA 70803, USA
4e-Science Institute, Edinburgh EH8 9AA, UK

Owing to the loose coupling between replicas, the replica–exchange (RE) class of algorithms
should be able to benefit greatly from using as many resources as available. However, the
ability to effectively use multiple distributed resources to reduce the time to completion
remains a challenge at many levels. Additionally, an implementation of a pleasingly
distributed algorithm such as replica–exchange, which is independent of infrastructural
details, does not exist. This paper proposes an extensible and scalable framework based
on Simple API for Grid Applications that provides a general-purpose, opportunistic
mechanism to effectively use multiple resources in an infrastructure-independent way. By
analysing the requirements of theRE algorithm and the challenges of implementing it on real
production systems, we propose a new abstraction (BIGJOB), which forms the basis of the
adaptive redistribution and effective scheduling of replicas.

Keywords: replica–exchange; Simple API for Grid Applications; Migol; adaptive;
fault tolerance
On
and

*A
1. Introduction

Several classes of applications are well suited for distributed environments.
Probably the best known and most powerful examples are those that involve an
ensemble of decoupled tasks, such as simple parameter sweep applications
(Casanova et al. 2000). A slightly more complicated and challenging class of
distributed applications are those that have a degree of coupling between
individual subtasks. An interesting example of such applications is those based
upon the replica–exchange (RE; Hansmann 1997; Sugita & Okamoto 1999)
algorithm. RE simulations are used to understand physical phenomena—ranging
from protein folding dynamics to binding affinity calculations.

The RE method involves the concurrent execution of multiple similar
simulations—the replicas. The coupling between the replicas occurs via periodic
exchange attempts between paired replicas. The exchange is typically infrequent
compared with the run-time of each replica, and is small in terms of
Phil. Trans. R. Soc. A (2009) 367, 2595–2606

doi:10.1098/rsta.2009.0051
e contribution of 16 to a Theme Issue ‘Crossing boundaries: computational science, e-Science
global e-Infrastructure I. Selected papers from the UK e-Science All Hands Meeting 2008’.

uthor for correspondence (sjha@cct.isu.edu).

2595 This journal is q 2009 The Royal Society

http://rsta.royalsocietypublishing.org/

A. Luckow et al.2596

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
communication bandwidth requirements. Thus, RE is prima facie a perfect
algorithm to exploit distributed resources. We label such a class of algorithms as
pleasingly distributed.

Most RE implementations are either infrastructure specific (Woods et al. 2005)
or, if using multiple distributed resources, they require prior co-scheduling
(Manos et al. 2008). Manos et al. (2008) is an important example of a first-
generation Grid application, wherein the effectiveness of coupling multiple
distributed resources for scientific problems has been demonstrated. The real
power of distributed systems, however, arises from adaptive algorithms and
implementations that provide applications with an agile execution model,
and thus the ability to use resources dynamically as opposed to a static execution
model inherited from parallel and cluster computing. Unfortunately, the barrier
to the development of such adaptive applications is high and the infrastructure
support is poor. Specifically, there is no implementation of an adaptive
RE algorithm, which is able to both effectively and reliably use multiple
distributed resources without prior scheduling as well as being independent of any
specific infrastructure.

In this paper, we address some of the challenges and performance bottlenecks
encountered when performing RE simulations over multiple distributed
resources, such as the overall slowdown due to synchronization arising from
the light coupling and the lack of co-scheduled resources. The unique
contribution of this paper is the implementation of a RE framework that
overcomes the described limitations by being able to adapt at run-time to a
change in the availability of resources and application resource requirements.
The framework builds upon preliminary work of integrating Simple API for Grid
Applications (SAGA) and MIGOL to provide fault tolerance. While SAGA
represents a well-defined, standardized interface for writing Grid applications,
MIGOL provides the underlying middleware services to guarantee the correct
and reliable execution of applications even in the presence of failures
(Lucknow et al. 2008).

We provide evidence that, as more resources become available, our framework
can opportunistically use these resources, leading to a reduction in the time to
completion of the scientific problem. The remainder of the paper is structured as
follows: in §2, we provide the basic ideas and advantages of using RE simulations to
understand physical properties of a RNA system. The replica–exchange molecular
dynamics (REMD) framework architecture and implementation are presented in
§3. Section 4 discusses the new BIGJOB abstraction and the SAGA GLIDE-IN
framework. In §5, we describe the deployment and results of different experiments
using the SAGA-basedRE framework on theTeraGrid (TG), and, in §6, we present
data establishing the advantages of REMD for the physical system under study.
2. Hepatitis C virus (RNA) using replica–exchange

In molecular dynamics (MD) approaches, sufficient sampling of configurations is
an important requirement for connecting atomistic results to macroscopic or
thermodynamic quantities available from experiments. This provides
an important motivation for researching ways to accelerate sampling and to
enhance the ‘effective’ time scales studied. Generalized ensemble approaches—of
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

2597Adaptive distributed RE simulations

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
which REMD (Sugita & Okamoto 1999) is a prominent example—represent a
promising attempt to overcome the general limitations of insufficient time scales,
as well as specific limitations of inadequate conformational sampling arising from
kinetic trappings. The fact that one single long-running simulation can be
substituted for an ensemble of loosely coupled shorter-running simulations make
these ideal candidates for distributed environments.

RE simulations consist of two distinct components: the underlying simulation
engine used for each replica, and the coupling mechanism between the individual
replicas. The degree and frequency of coupling and exchange can be either regular
(Sugita & Okamoto 1999) or irregular (Shirts & Pande 2001). An example of the
latter—parallel replica dynamics as implemented in Folding@home (Folding at
home. See http://folding.stanford.edu/) involves coordination between replicas
only when an ‘event’ occurs. By contrast, for regular RE applications, attempts to
exchange states between certain pairs occur at fixed intervals.

The hepatitis C virus (HCV) internal ribosome entry site (IRES) is recognized
specifically by the small ribosomal subunit and eukaryotic initiation factor 3 before
viral translation initiation. This makes it a good candidate for new drugs targeting
HCV. Our aim is to use REMD to enhance the sampling of the conformational
flexibility of the internal loop referred to as HCV IRES IIIb CA variant (Collier
et al. 2002) as well as the equilibrium energetics. The model of the physical system
under investigation in this work comprises an RNA system of nucleotides; the total
number of atoms in the simulating box is 21 887—including the RNA system,
explicit water molecules and ions for neutralization of the system. The initial
conformation of the RNA is taken from the NMR structure (PDB ID: 1PK7).
3. Implementing distributed replica–exchange using SAGA/MIGOL

(a) Replica–exchange manager architecture

The framework comprises three components, the RE-MANAGER, the REPLICA-
AGENT and the MIGOL infrastructure. The RE-MANAGER, also referred to as task
manager, is deployed on the user’s desktop and provides the interface to the
overall RE run. It orchestrates all replicas, which involves file staging, job
spawning and the conduction of the exchange attempts, using the SAGA APIs.

The second element is the task agent, the REPLICA-AGENT, which resides on the
machines where the RE replicas are executed. The REPLICA-AGENT is launched using
SAGA CPR and MIGOL. Nanoscale molecular dynamics (NAMD) (Phillips et al.
2005), a highly scalable, parallel MD code, is used to carry out the MD simulation
corresponding to each replica run. It is important to mention that any other MD or
MonteCarlo code could beused just as simply and effectively.Finally,MIGOL handles
the reliable execution of the REPLICA-AGENT and the replicas, i.e. the submission, the
monitoring and, if required, the recovery of replicas or the application itself.

(b) Replica–exchange logic

RE simulations involve the running of multiple replica jobs. Each replica is
assigned a different temperature. Depending on the number of processes n, the
RE-MANAGER creates n/2 pairs of replicas. Before launching a job, the RE-
MANAGER ensures that all required input files are transferred to the respective
Phil. Trans. R. Soc. A (2009)

http://folding.stanford.edu/
http://rsta.royalsocietypublishing.org/

A. Luckow et al.2598

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
resource. For this purpose, the SAGA File API and the GRIDFTP adaptor are
used. The replica jobs are then submitted to the resource using the SAGA CPR
API and the MIGOL/GRAM middleware.

When all replicas reach a pre-determined state (e.g. the NAMD job finishes
after a fixed number of steps), the decision as to whether to pairwise exchange
temperatures between neighbouring replicas is determined by the METROPOLIS

scheme. The run of an ensemble of replicas in parallel and the subsequent
pairwise exchange attempt are referred to as generation. No two replicas can
belong to different generations. If the exchange attempt is successful, parameters
such as the temperature are swapped. Both jobs are then relaunched. Often the
METROPOLIS scheme returns a negative result, and an exchange is not carried out;
thus, it is difficult to respond to a possible exchange speculatively.

(c) Deploying on production environments

The RE framework has been successfully deployed on Louisiana optical
network initiative (LONI) and TG production resources (Lucknow et al. 2008).
In these environments, a significant slowdown was observable, in particular
when running a larger number of replicas. A major reason for this slowdown was
the fact that the restarted replicas are required to queue again at the local
scheduler. In pathological cases, the complete system came to a halt solely due to
a single-crowded or slow resource.

To avoid such bottlenecks, the multiple subtasks that constitute distributed
applications need to avoid requeuing at the system batch queue level.
Additionally, distributed applications that are decomposable into subtasks
should be able to respond to the dynamic availability of resources.
Unfortunately, current infrastructures do not support such dynamic scheduling
directly. To provide this capability to applications, we need (i) abstractions that
enable agile execution models via application-level allocation of resources, and
(ii) different adaptivity strategies that determine how resources are efficiently
used. Section 4 describes the extensions to the simple RE framework that enables
efficient scheduling of subtasks and supports adaptive applications.
4. Adaptive replica–exchange: abstractions and implementation

As mentioned before, the use of multiple simple Grid jobs to execute many
replicas has a severe limitation: all simple jobs must queue at the resource
management system, i.e. a single delayed job can cause an overall slowdown.
We overcome this issue by using an efficient dispatching scheme, which builds
upon the ability to cluster replicas using the novel BIGJOB abstraction before
submission. Based on this abstraction, we propose different strategies that
address the dynamic conditions of distributed environments.

(a) Abstractions

A common approach to avoid queuing delays is the use of place-holder jobs,
which are able to dispatch several subjobs without each subjob needing to queue
at the local scheduler. A specific mechanism to support this pattern is the
GLIDE-IN abstraction, in reference to the Condor GLIDE-IN system (Frey et al. 2002),
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

RE-MANAGER

SAGA
File

bigjob

BIGJOB abstraction

GLIDE-IN abstraction

REPLICA-AGENT

replica

subjob

replica

subjob

replica

subjob

replica

subjob

resource

SAGA CPR/MIGOL SAGA advert

SAGA CPR/MIGOL SAGA advert

user desktop

Figure 1. RE-MANAGER abstractions. The BIGJOB abstraction provides the capability to cluster
subjobs into a larger bigjob, and is implemented on top of the GLIDE-IN abstraction. (Black rectangles,
RE framework; dark grey rectangles, SAGA GLIDE-IN framework; light grey rectangles, SAGA.)

2599Adaptive distributed RE simulations

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
which pioneered this idea. A GLIDE-IN job requests a sufficiently large chunk of
resources; smaller subjobs can then rapidly be executed through the GLIDE-IN job.
By avoiding the high initial costs for queueing each individual replica job, the
time to completion can be dramatically reduced.

Figure 1 summarizes the abstractions developed and used in this work to
support the clustering of subjobs into larger bigjobs and the effective dispatching
of the subjobs. The specific capability to cluster subjobs is provided to the
application via the BIGJOB abstraction. The SAGAGLIDE-IN abstraction is used to
support the commonly occurring place-holder job pattern. The BIGJOB abstraction
defines a big_job and sub_job object; for each big_job object, a GLIDE-IN job
with the desired number of resources is started, and sub_job objects, which
correspond to individual replicas, are mapped to a big_job using the jobID as
reference. It is helpful to reiterate that, although there is a big_job object, it is
submitted as a GLIDE-IN job. Also, the BIGJOB abstraction in turn uses the GLIDE-IN
abstraction to map the individual bigjob and subjobs to physical resources.
(b) Implementation

The RE framework has been extended to support the BIGJOB and GLIDE-IN
abstractions. BIGJOB provides the ability to cluster subjobs; GLIDE-IN allows the
effective scheduling of the subjobs. As illustrated in figure 2, the RE-MANAGER uses
the big_job and sub_job objects as replacements for the job object defined by
SAGACPR.Thebig_job andsub_job objects behave similarly to regular SAGA
CPR job objects. Thus, the RE-MANAGER, which is the application in this case, does
not require any extensive modification; all that the RE-MANAGER has to do is to
provide a mapping from a sub_job to a suitable big_job via a jobID.
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

RE-MANAGER

user desktop

resource

resource manager

BIGJOB adstraction

SAGA GLIDE-IN

MANAGER

advert
service

(i) run bigjob

(iv) run subjob

(ii) submit (v) create_job_entry

(vi) poll

(iii) start job

(vii) spawn subjobs

REPLICA-AGENT

NAMD

subjob

NAMD

subjob

NAMD

subjob

NAMD

subjob

bigjob

Figure 2. RE-MANAGER and SAGA GLIDE-IN framework. The GLIDE-IN job (REPLICA-AGENT) is used
as place-holder job for all replica subjobs running on a single cluster. The RE-MANAGER controls
both the REPLICA-AGENT and the replica jobs using the BIGJOB abstraction. (Black rectangles, RE
framework; dark grey rectangles, SAGA GLIDE-IN framework; light grey rectangles, SAGA.)

A. Luckow et al.2600

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
The SAGA GLIDE-IN implementation comprises three components: (i) the
GLIDE-IN MANAGER that provides the GLIDE-IN abstraction and manages
the orchestration and scheduling of GLIDE-IN jobs (which in turn allows the
management of both bigjob objects and subjobs) (ii) the REPLICA-AGENT that
represents the GLIDE-IN job and thus, the application-level resource manager on
the respective resource, and (iii) the advert service that is used for
communication between the GLIDE-IN MANAGER and REPLICA-AGENT.

Before running regular jobs, an application, in this case the RE-MANAGER,
must initialize a big_job object. The GLIDE-IN MANAGER then queues a GLIDE-IN
job, which actually runs a REPLICA-AGENT on the respective resource. For this
big_job instance, the specified number of resources is requested. Subsequently,
sub_job objects can be submitted through the GLIDE-IN MANAGER using the
jobID of the big_job as reference. The GLIDE-IN MANAGER ensures that
the subjobs are launched onto the correct resource based upon the specified jobID
using the right number of processes.

Communication between the REPLICA-AGENT and GLIDE-IN MANAGER is carried
out using the SAGA advert service, a central key/value store. For each new job,
an advert entry is created by the GLIDE-IN MANAGER. The REPLICA-AGENT

periodically polls for new jobs. If a new job is found and resources are available,
the job is dispatched, otherwise it is queued. Furthermore, the agent encapsulates
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

2601Adaptive distributed RE simulations

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
local machine-specific settings. The REPLICA-AGENT ensures that the right
combination of compiler, message passing interface (MPI) library and NAMD
executable is used.

(c) Adaptive replica scheduling

Distributed applications including RE simulations must be able to deal with
time-varying resource availabilities. An application is referred to as dynamic
when either its resource requirements or the availability and usage of resources
change during its run-time. Adaptivity is a mechanism to respond to dynamic
changes; a dynamic application may deploy multiple adaptive strategies or
choose between competing adaptive strategies. For an application to be adaptive,
it is necessary for it to be able to effectively use an expanded or reduced set of
resources; additionally, for an adaptive application to be scalable, it must also be
able to determine which resources to use efficiently. For resource determination,
our framework currently relies on a static, user-defined mapping of replicas and
resources. In the remainder of this paper, we will focus on dynamic resource
usage (and not on dynamic resource determination or optimization).

For jobs that want to maximize their throughput, the ability to adapt to
dynamically changing resource loads is critical. It is equally important for long-
running applications to be able to support an agile execution model allowing the
effective usage of resources as they become available. Specifically, there are
different ways a RE simulation can respond to a change in the number of
resources required/available:

— Scenario A. By increasing the number of processes assigned to each replica,
the time-to-completion can be reduced. In addition, resources can be
partitioned in a way that balances the different speeds of resources. For
example, by adding processes to a delayed replica, bottlenecks due to
synchronization of replicas can be avoided.

— Scenario B. As resources become available, the number of replicas can be
adjusted. Depending on the underlying physics model, the additional replicas
can be used to either refine the temperature range (adaptive sampling) or to
extend the temperature range (enhanced dynamics). This REMD approach is
also referred to as cool walking (Brown & Head-Gordon 2003). Our framework
supports both adaptive strategies.
5. Distributed replica–exchange on the TeraGrid

To evaluate the performance of the RE manager, several experiments have been
conducted on TG and LONI resources. The resources used are: Ranger (TG),
Abe (TG) and QueenBee (QB; both TG and LONI). The RE-MANAGER was
configured to run a parallel NAMD simulation with up to 16 replicas sampling a
temperature range between 300 and 450 K. Replica–exchanges are carried out
between pairs of replicas. Thus, there are up to eight exchanges in each
generation. Each test run comprises up to 64 attempted exchanges; each replica
can use up to 24 MPI processes and runs for 500 time steps between exchange
attempts. The metric used is the time to completion for 64 attempted exchanges.
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

0

20

40

60

80

100

QB Abe/QB Abe/QB/Ranger

tim
e

to
 c

om
pl

et
io

n
(m

in
)

Figure 3. Replica size adaptivity (scenario A). As the number of resources available increases,
the number of cores assigned to a replica (a NAMD job) is dynamically adjusted, while keeping the
number of replicas constant at 16. There are four GLIDE-INs with 32 cores each. As more resources
become available, more cores are assigned to each replica, which leads to a reduction in Tc.

A. Luckow et al.2602

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
Initially, we investigated the effect of the GLIDE-IN framework on the time to
completion (Tc) using 16 replicas on QB. Using the GLIDE-IN framework, there
was a reduction in Tc from 52 to 26 min on average, which corresponds to a
decrease of 50 per cent. In the best case, improvements of up to 70 per cent were
observed. This effect is attributed to the elimination of the queuing times for
every subjob. Once the REPLICA-AGENTs become active, replicas can be
dispatched without requiring interactions with the local scheduler.

Further, we performed tests for the two adaptive scenarios. In scenario A, the
number of replicas was kept constant (conventional REMD) and the replica size,
i.e. the number of MPI processes assigned to each replica, was varied as more
resources became available. In scenario B, the replica number, i.e. the number
of replicas participating in a generation, was varied (cool walking). We compare
Tc for 64 attempted exchanges on different sets of distributed resources and
GLIDE-IN configurations.

In scenario A, up to three different resources are used; the number of GLIDE-INs
varies from 4 up to 12, while the number of replicas used is fixed at 16. Thus, the
size of the individual replicas is varied. When a resource is being used, it runs four
GLIDE-INs, and each GLIDE-IN job has a constant size of 32 cores. Although, the
number of GLIDE-IN jobs on a resource is fixed at 4 for reasons of simplicity, our
results will hold for general values. If all resources (Abe, QB and Ranger) were
being used, there would be 12 GLIDE-IN jobs with 32 cores each, i.e. a total of 384
cores would be available. GLIDE-INs are submitted to 1, 2 or 3 statically configured
resources. After submission, the GLIDE-INs are subject to different queueing delays
at the local schedulers. To reflect these different loads, the number of MPI
processes assigned to each replica is dynamically increased as new resources
become available. Depending on the number of available resources, between 8
(for 4 GLIDE-INs) and 24, MPI processes (for 12 GLIDE-INs) are used for each replica.

Figure 3 shows the results of the distributed run. In spite of the overhead
for migrating replicas to newly available resources, a notable decrease in Tc of up
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

0

50

100

150

200

250

300

Abe Abe/Ranger Abe/QB/Ranger

tim
e

to
 c

om
pl

et
io

n
(m

in
)

Figure 4. Replica number adaptivity (scenario B): in this scenario, the framework dynamically
adjusts the number of replicas. A constant number of four GLIDE-INs with 64 cores each are
distributed across one, two or three machines; the size of each replica is kept fixed at 16 cores. Once
again, the greater the number of distributed resources that can be used, the smaller the Tc.

2603Adaptive distributed RE simulations

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
to 15 min can be observed as the number of resources increases from one to three.
Although, the efficiency, defined as run-time on one resource divided by the run-
time on multiple resources scaled by the number of resources, is only
approximately 0.5, this is a limitation of the used set-up rather than a general
scalability barrier. The set-up comprises rather short NAMD jobs; in particular,
during the initial phase, jobs are often migrated to other resources, which mainly
cause this overhead. During longer runs, this overhead is negligible. What is also
very important to note is the reduced fluctuation in the Tc when multiple
resources are used. This is indicative of the fact that there is a reduction in the
sensitivity to queue loads—something that applications on real-production
environments have to battle with.

In scenario B, the capability of the RE-MANAGER to adaptively adjust the
number of replicas by varying either the range of temperature or the specific
temperatures simulated is evaluated. For this scenario, four GLIDE-INs with
64 cores each are distributed across one, two or three different distributed
resources. This means that the total of 256 cores is allocated on (i) Abe only,
(ii) Abe and Ranger, and (iii) Abe, Ranger and QB. Each replica has a constant
number of 16 MPI processes, and thus any GLIDE-IN can run exactly four replicas
when active.

At the beginning of the experiment, all four GLIDE-INs are submitted to one,
two or three resources (statically configured). Similar to scenario A, different
queueing delays usually occur. Consequently, not all GLIDE-INs start simul-
taneously. Using the adaptive temperature sampling algorithm, the number of
replicas is dynamically varied as the number of active GLIDE-INs increases.
Depending on the number of running GLIDE-INs, the ensemble consists of 4–16
replicas (increase in steps of 4).

As shown in figure 4, Tc decreases with the number of resources used. With the
simulation distributed onto a greater number of resources, the probability that a
single heavily used resource delays the overall progress of the simulation is
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

35
10

9

8

7

6

5

4

3

2

1

0

30

25

20

15

10

tim
e

pe
r

ge
ne

ra
tio

n
(m

in
)

no
. o

f
ac

tiv
e

G
L

ID
E
–I

N
s

5

0
50 100 150

time (min)
200 250

Figure 5. The plots show the time series of the average times (solid curve) between exchange
attempts and the number of active GLIDE-INs (dotted curve) over a 6 hour run on the TG.

A. Luckow et al.2604

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
reduced. The results clearly demonstrate the benefits of the adaptive replica
scheme—it is favourable to instantly use resources as they become active, instead
of waiting for the complete set of nodes to become available.
6. Results: enhanced sampling of hepatitis C virus

In §4, we discussed the design and performance of the framework and showed
how it enables the effective usage of multiple resources. In §2, we provided
motivation for why the RE approach is required to understand the energetics and
conformational flexibility of the internal loop of the HCV. The effectiveness of
the RE approach in increasing the rate of convergence to equilibrium (Boltzmann
distribution) or enhancing the sampling can be measured by the rate of
attempted exchanges (Lei & Duan 2007), or equally by the inverse of the time
between attempted exchanges.

REMD simulations (scenario A) were performed for HCV IRES IIIb CA
variant using the model described in §2. The replicas covered a temperature
range from 300 to 450 K, thus fixing the number of replicas to 16.
To demonstrate the effectiveness of our RE framework, we analyse a typical
time series of the number of resources used (available) and thus, the number
of active GLIDE-INs during a 6 hour run on a production infrastructure. Each
GLIDE-IN has 32 cores; thus, the number of cores for each replica is determined by
the numbers of active GLIDE-IN jobs. Figure 5 shows how the number of active
GLIDE-INs changed during the 6 hour interval. To start with, there were only
enough processors to support one GLIDE-IN job, but after approximately 2 hours,
there were enough to activate two GLIDE-INs; after 3 hours, three GLIDE-INs are
running. Eight GLIDE-INs were activated before the 6 hour time limit. As the
number of GLIDE-INs increases, the number of processors assigned to each replica
increases, with the physically important consequence that there is a concomitant
decrease in the average time between exchange attempts (solid curve in figure 5).
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

35
10

9

8

7

6

5

4

3

2

1

0

30

25

20

15

10

tim
e

pe
r

ge
ne

ra
tio

n
(m

in
)

sp
ee

d-
up

5

0
321 4 5
no. of active GLIDE-INs

6 7 8

Figure 6. The upper plot illustrates how the average time (solid curve) between exchange attempts
decreases as the number of GLIDE-INs (dotted curve) increases. At the same time, the speed-up grows.

2605Adaptive distributed RE simulations

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
The average time between exchange attempts as a function of the number of
active GLIDE-INs and the speed-up—measured as the inverse of the average time
normalized by the time taken with one GLIDE-IN (thus the value of 1 for the one
GLIDE-IN case)—is shown in figure 6.
7. Conclusion and future work

In summary, SAGA provides a well-defined and sufficiently powerful interface to
develop the required abstractions to support adaptive distributed RE
applications. SAGA allows the simple decoupling of the RE orchestration logic
from the underlying distributed infrastructure. The SAGA GLIDE-IN framework
represents the first known instance of creating a run-time, system-level
abstraction for distributed systems from basic programming interfaces. Both
SAGA and the RE framework are general purpose components, while remaining
extensible. The adaptive RE framework has been successfully deployed on TG
and LONI resources. Using the BIGJOB abstraction, RE subjobs can efficiently
be dispatched reducing the time to completion by up to 70 per cent. The use of
different adaptivity strategies to dynamically use additional resources led to
a further reduction in the time to completion. Importantly, we have shown
how our REMD framework was used to enhance the sampling and rate of
convergence for a biological system, the inner loop of the HCV IRES IIIb CA
variant, which is an important drug-delivery target.

In the future, we will refine our RE framework by making it more adaptive
towards dynamic environments, e.g. by deploying an asynchronous RE scheme
as described by Gallicchio et al. (2007). At the same time, we will improve our
RE infrastructure to support further adaptive strategies for resource determina-
tion and usage. While it has been shown that resources can efficiently be
allocated with the BIGJOB abstraction, a mechanism for dynamic resource
discovery and for intelligent placements of jobs will be beneficial to further
Phil. Trans. R. Soc. A (2009)

http://rsta.royalsocietypublishing.org/

A. Luckow et al.2606

 on May 4, 2010rsta.royalsocietypublishing.orgDownloaded from
decrease the time to completion. Various approaches for the resources
determination have been proposed, e.g. batch queue prediction (Nurmi et al.
2007; Chakraborty et al. 2009) and advance reservation-based schemes
(Jeske et al. 2007).

This work would not have been possible without the support of the wider SAGA team. Important
funding for SAGA specification and development has been provided by the UK EPSRC grant no.
GR/D0766171/1 (via OMII). S.J. acknowledges the e-Science Institute, Edinburgh, for supporting
the research theme, ‘Distributed Programming Abstractions’. We would also like to thank
Yaakoub el-Khamra for useful discussions. This work has also been made possible thanks to
computer resources provided by the TG and LONI.
References

Brown, S. & Head-Gordon, T. 2003 Cool walking: a new Markov chain Monte Carlo sampling
method. J. Comput. Chem. 24, 68–76. (doi:10.1002/jcc.10181)

Casanova, H., Obertelli, G., Berman, F. & Wolski, R. 2000 The AppLeS parameter sweep
template: user-level middleware for the grid. Sci. Program. 8, 111–126.

Chakraborty, P., Jha, S. & Katz, D. S. 2009 Novel submission modes for tightly coupled jobs
across distributed resources for reduced time-to-solution. Phil. Trans. R. Soc. A 367,
2545–2556. (doi:10.1098/rsta.2009.0054)

Collier, A., Gallego, J., Klinck, R., Cole, P., Harris, S., Harrison, G., Aboul-ela, F., Varani, G. &
Walker, S. 2002 A conserved RNA structure within the HCV IRES elF3-binding site. Nat.
Struct. Biol. 9, 375–380.

Frey, J., Tannenbaum, T., Livny, M., Foster, I. & Tuecke, S. 2002 Condor-G: a computation
management agent for multi-institutional grids. Cluster Comput. 5, 237–246. (doi:10.1023/
A:1015617019423)

Gallicchio, E., Levy, R. & Parashar, M. 2007 Asynchronous replica exchange for molecular
simulations. J. Comput. Chem. 29, 788–794. (doi:10.1002/jcc.20839)

Hansmann, U. 1997 Parallel tempering algorithm for conformational studies of biological
molecules. Chem. Phys. Lett. 281, 140–150. (doi:10.1016/S0009-2614(97)01198-6)

Jeske, J., Luckow, A. & Schnor, B. 2007 Reservation-based resource-brokering for grid computing.
In Proc. German e-Science Conf., Baden-Baden, Germany.

Lei, H. X. & Duan, Y. 2007 Improved sampling methods for molecular simulation. Curr. Opin.
Struct. Biol. 17, 187–191. (doi:10.1016/j.sbi.2007.03.003)

Luckow, A., Jha, S., Kim, J., Merzky, A. & Schnor, B. 2008 Distributed replica–exchange
simulations on production environments using SAGA and Migol. In Proc. 4th IEEE Int. Conf.
on e-Science, Indianapolis, IN.

Manos, S., Mazzeo, M., Kenway, O., Coveney, P. V., Karonis, N. T. & Toonen, B. 2008
Distributed MPI cross-site run performance using MPIg. In HPDC’08: Proc. 17th Int. Symp. on
High Performance Distributed Computing, pp. 229–230. New York, NY: ACM.

Nurmi, D., Brevik, J. & Wolski, R. 2007 QBETS: queue bounds estimation from time series.
SIGMETRICS Perform. Eval. Rev. 35, 379–380. (doi:10.1145/1269899.1254939)

Phillips, J. et al. 2005 Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802.
(doi:10.1002/jcc.20289)

Shirts, M. & Pande, S. 2001 Mathematical analysis of coupled parallel simulations. Phys. Rev. Lett.
86, 4983–4987. (doi:10.1103/PhysRevLett.86.4983)

Sugita, Y. & Okamoto, Y. 1999 Replica-exchange molecular dynamics method for protein folding.
Chem. Phys. Lett. 314, 141–151. (doi:10.1016/S0009-2614(99)01123-9)

Woods, C. J. et al. 2005 Grid computing and biomolecular simulation. Phil. Trans. R. Soc. A 363,
2017–2035. (doi:10.1098/rsta.2005.1626)
Phil. Trans. R. Soc. A (2009)

http://dx.doi.org/doi:10.1002/jcc.10181
http://dx.doi.org/doi:10.1098/rsta.2009.0054
http://dx.doi.org/doi:10.1023/A:1015617019423
http://dx.doi.org/doi:10.1023/A:1015617019423
http://dx.doi.org/doi:10.1002/jcc.20839
http://dx.doi.org/doi:10.1016/S0009-2614(97)01198-6
http://dx.doi.org/doi:10.1016/j.sbi.2007.03.003
http://dx.doi.org/doi:10.1145/1269899.1254939
http://dx.doi.org/doi:10.1002/jcc.20289
http://dx.doi.org/doi:10.1103/PhysRevLett.86.4983
http://dx.doi.org/doi:10.1016/S0009-2614(99)01123-9
http://dx.doi.org/doi:10.1098/rsta.2005.1626
http://rsta.royalsocietypublishing.org/

	Adaptive distributed replica-exchange simulations
	Introduction
	Hepatitis C virus (RNA) using replica-exchange
	Implementing distributed replica-exchange using SAGA/Migol
	Replica-exchange manager architecture
	Replica-exchange logic
	Deploying on production environments

	Adaptive replica-exchange: abstractions and implementation
	Abstractions
	Implementation
	Adaptive replica scheduling

	Distributed replica-exchange on the TeraGrid
	Results: enhanced sampling of hepatitis C virus
	Conclusion and future work
	This work would not have been possible without the support of the wider SAGA team. Important funding for SAGA specification and development has been provided by the UK EPSRC grant no. GR/D0766171/1 (via OMII). S.J. acknowledges the e-Science Institute,...
	References

