
FAUST
May 7, 2009 Ole Weidner (oweidner@cct.lsu.edu)

FAUST

A Framework for Adaptive Ubiquitous Scalable Tasks

Abstract

FAUST May 7, 2009

Contents

1 Random Thoughts 3

1.1 Modeling Job Dependencies . 3

1.1.1 Types of Dependencies . 3

1.1.2 Describing Dependencies 4

2 Implementation 7

2.1 Overview . 7

2.2 Interface . 7

2.3 Scheduling Engine . 7

2.4 Agents . 7

2.4.1 Database . 8

2.4.2 Mode of Operation . 8

2.4.3 Host Files and Agent Repositories 9

3 Appendix 10

4 References 11

oweidner@cct.lsu.edu 2

FAUST Random Thoughts May 7, 2009

1 Random Thoughts

1.1 Modeling Job Dependencies

The overall goal of the FAUST framework is to schedule a given set of jobs on
a number of distributed resources as effective as possible. Effectiveness in our
case means minimum makespan1 scheduling or time to completion. In case of an
application which consists of a set of independent jobs (embarrassingly parallel
EP), scheduling is rather trivial: execute as many jobs as possible at the same
time on all available resources. An example for such an application would be
a parameter sweep which generates and executes a set of independent model
instances with different input parameters.

However, lots of distributed applications do not fall into the category of EP
applications. Jobs often require communication with other jobs or they may
rely on data that has to be generated by other jobs. Message-passing (e.g.
MPI) as well as distributed workflows are good examples for these types of
applications. Unfortunately, scheduling becomes way more complex in this case,
since it has to take not only the availability of resources but also things like
interconnect bandwidth, shared filesystems, etc. into account to minimize the
overhead exposed by job dependencies.

In this section, we try to identify different types of job dependencies, describe
how to model them on application level and discuss the implications for possible
minimum makespan scheduling algorithms.

1.1.1 Types of Dependencies

So far, we identified two types of dependencies in distributed applications that
are relevant for job scheduling and placement. We distinguish between depen-
dencies that rely on data availability and dependencies that rely on communi-
cation:

Data Dependencies occur whenever a job requires data that is generated by
another job or set of jobs. Imagine for example an image processing application
(Figure 1) that splits up an image into several regions and applies a filter to
each of the regions in parallel. Another job takes the processed fragments and
puts them back together. This job depends on the output generated by the
filter instances.

Communication Dependencies occur whenever two or more jobs need to
exchange information while they are running. Imagine a 2D heat-tansfer appli-

1The makespan of a schedule is its total execution time.

oweidner@cct.lsu.edu 3

FAUST Random Thoughts May 7, 2009

Job A
(Filter Instance)

Job B
(Filter Instance)

Job N
(Filter Instance). . .

Job M
(Composer)

Job A
(Filter Instance)

Job B
(Filter Instance)

Job N
(Filter Instance)

Job M
(Composer)

t

. . .

Figure 1: Example of a dependency graph (r) for an image processing appli-
cation where job M depends on the data generated by jobs A...N. The grey
vertical bar in the scheduling scheme (l) represents the time overhead generated
by data transfer.

cation (Figure 2) that splits up the problem space in 4 regions and maps them
to 4 different jobs (domain decomposition). Communication has to occur when-
ever the heat transfers across domain boundaries. This concept is also known
as ghost-zone exchange and a very well known concept in MPI.

Job A
(Domain A)

Job B
(Domain B)

Job D
(Domain D)

t

Job A
(Domain A)

Job C
(Domain C)

Job B
(Domain B)

Job D
(Domain D)

Job C
(Domain C)

Figure 2: Example of a dependency graph (r) for set of communicating jobs in a
domain decomposition application. The grey vertical bars within the jobs in the
scheduling scheme (l) represent the time overhead generated by communication.

1.1.2 Describing Dependencies

Describing just the dependencies and type of dependencies (data or commu-
nication) between jobs enables a scheduler to execute the jobs in a way that
satisfies the dependencies. However, without additional information about the
jobs and the logical dependencies, a scheduling algorithm won’t be able to place
the jobs efficiently on the distributed resources. These attributes usually can’t
be extracted from the application automatically. They have to be described
explicitly on application level. We identify a minimum set of these attributes
and show how they can be described using the FAUST API.

Data Dependencies expose a potential data transfer overhead. A scheduling

oweidner@cct.lsu.edu 4

FAUST Random Thoughts May 7, 2009

algorithm has to decide wether it should either move the data to the computation
or the computation to the data (place the dependent job as close2 to the data
as possible). To be able to make this decision, the following information has to
be provided on application level:

• Expected runtime of the jobs that are part of the dependency.

faust::attribute::walltime

• Expected amount of data generated by a job.

faust::attribute::data_volume

The FAUST framework provides an interface to describe data dependencies
in applications through the job submission interface. In case of the example
image processing application described above, this could look like the following
(simplified) code fragment:

Describing Data Dependencies

1

2 job::description filter_jd;

3 filter_jd.set_attribute(walltime, "10.0");

4 filter_jd.set_attribute(data_volume, "0.5GB");

5

6 std::vector<std::string> filter_desc;

7 for(int i=1; i<10; ++i)

8 filter_desc.push_back(filter_jd); // create 10 filter instances

9

10 job::service s;

11 job::group filters = s.create_job_group(filter_desc);

12

13 // create the composer job which has a DATA dependency with the

14 // filter job group.

15 job::description composer_jd;

16 job::job composer = s.create_job(composer_jd, filters, type::DATA);

17

18 s.schedule();

19

Communication Dependencies expose a potential communication overhead.
A scheduling algorithm has to decide wether it should place the jobs on resource
which are connected via high-bandwith interconnects or if processing power
for the individual jobs is more important than communication. The following
application attributes can be specified on application level to help the scheduler
to make the right decisions:

2Close in this context is defined as the interconnect bandwidth between two locations.

oweidner@cct.lsu.edu 5

FAUST Random Thoughts May 7, 2009

• Computation/communication ratio

faust::attribute::comm_comp_ratio

• Communication pattern (regular, irregular, ...)

faust::attribute::comm_pattern

FIXME: I’m still struggling if these are the right attributes and if it’s
feasible to describe them on application level. Reading some papers
about this might help...

oweidner@cct.lsu.edu 6

FAUST Implementation May 7, 2009

2 Implementation

2.1 Overview

2.2 Interface

2.3 Scheduling Engine

2.4 Agents

The Agents are used to provide the Scheduling Engine as well as the program-
mer (through the faust::resmon API) with periodic informations about all
participating systems that are relevant for scheduling descissions and job exe-
cution. FAUST Agents are realized as independent command line applications
that run on the execution hosts (usually on the head or gateway nodes) and
report vital system and status informations like queue status, network load,
filesystem availability, etc. back to a FAUST application instance.

FAUST
Database

FAUST
Agent

FAUST
Agent

FAUST
Agent

FAUST
Framework

FAUST
Application

Figure 3: Example of a FAUST application instance running agents on three
execution hosts. To ensure application persitency, the communication between
the application and the agents flows through a proxy database.

Besides reporting system informations to the application, agents can option-
ally act as job submission endpoints. In this scenario, an application sends
jobs directly to the agents for execution and not to the system’s job service
(like Globus, GridSAM, PBS, etc). This will usually happen, if the applica-
tion scheduler (or the programmer) decides to apply ’hijacking’ strategies like
Glide-In which require circumvention of local queueing systems.

oweidner@cct.lsu.edu 7

FAUST Implementation May 7, 2009

2.4.1 Database

A critical design descission was that all communication between a FAUST ap-
plication and its agents must be routed through a proxy database to ensure
global persitency in a distributed environment. This indirect communication
between agents and application was motivated by two important requirements
during the design process:

• A FAUST application must have the ability to disconnect and reconnect
from its infrastructure whithout the need to abort and restart.

• A FAUST application might run in a restricted namespace (eg. fire-
walled). A communication proxy can help to avoid this restriction.

• The data collected by the agents might be of interest to other application
or services. A central database allows other clients (Web-Services, etc.)
to harvest and use this data.

The agents use the SAGA Advert Service and its PostgreSQL-based middleware
adaptor to read and write hierarchical entries from or to a centralized datbase.
The structure of the database (as shown in Figure ??) is known to the agents
and the application framework. In case the applications wants to read system
informations from a certain agent, it simply reads the entries to which the agent
periodically writes its information. If the application framework wants to send
a command to an agent, it writes a command to the entry in which the agent
periodically looks for new commands.

Although the communication between agents and application is not very dense,
this approach introduces a certain amount communication overhead that can
slow down an application - especially with the current implementation of the
PostgreSQL-based SAGA middleware adaptor. A simple improvement would
be the development of a high-performance SAGA Advert adaptor which would
allow for higher data throughput without the need to change the FAUST frame-
work. Benchmarks for the current PostgreSQL-based implementation can be
found in section ??.

2.4.2 Mode of Operation

The FAUST Agents are transparently deployed and started by a FAUST ap-
plication as soon as a new faust::service object gets instantiated. Each
faust::service instance is defined by a set of resources which represent possi-
ble target hosts for job submission. Each faust::resource has its own Agent
for management, monitoring and information retreival.

oweidner@cct.lsu.edu 8

FAUST Implementation May 7, 2009

Unfortunately, different distributed infrastructures require different techniques
to extract the informations that are required for effective scheduling. Although
there are several more or less well defined interfaces to query these informations
like NWS or BQP, it appears that in practice their existence and proper oper-
ation cannot be assumed. For this reason, agents require a relatively rich set
of initial system informations that are used to generate subsequent runtime in-
formations and performance predictions. Once deployed and started, an Agent
follows the (simplified) execution scheme shown in Figure 4 .

01 BEGIN
02 IF provided host description is usable on this machine THEN
03 REPEAT
04 Gather informations and write to database
05 IF Resource reservation request THEN
06 Try to reserve resources through queueing system
07 ENDIF
08 IF Job execution request THEN
09 IF Resources available THEN
10 Execute job
11 ELSE
12 Report that no resources are available
13 ENDIF
14 ENDIF
15 UNTIL Termination request received
16 ELSE
17 Report error and terminate
18 ENDIF
19 END

Figure 4: Pseudocode describing the Agent’s mode of operation.

Besides this basic functionality, agents provide logging and fault tolerance mech-
anisms which are crucial in a capricious distributed environment.

2.4.3 Host Files and Agent Repositories

Writing a properly working resource description file for a system can be a tedious
task.

oweidner@cct.lsu.edu 9

FAUST Appendix May 7, 2009

3 Appendix

oweidner@cct.lsu.edu 10

FAUST References May 7, 2009

4 References

oweidner@cct.lsu.edu 11

	Random Thoughts
	Modeling Job Dependencies
	Types of Dependencies
	Describing Dependencies

	Implementation
	Overview
	Interface
	Scheduling Engine
	Agents
	Database
	Mode of Operation
	Host Files and Agent Repositories

	Appendix
	References

