
1 Project Overview and Description

In this proposal, we aim to develop programming abstractions to encourage the best programming and the
best performance of data-intensive applications on the Google/IBM cluster and other distributed infrastruc-
tures. To do this, we will use our experience with the design, development and deployment of SAGA [1] (a
high level interface for creating distributed applications) and our experience with three selected data-intensive
applications: BLAST [2], probably the most commonly used bioinformatics application; LIGO [3] data ana-
lysis, the work done to search for gravitational-wave signals in the data produced by the LIGO detectors
in Louisiana and Washington; and Montage [4], a standard astronomical image mosaicking application also
used in a wide variety of computer science projects.
SAGA was initially designed for and evolved with compute-intensive applications in mind; it provides many
of the application level abstractions that are required to develop and deploy computationally intensive ap-
plications. Recently, we have implemented the MapReduce [5] (with support from Google) and All-Pairs [6]
programming abstractions to provide frameworks – which in turn are being used to rewrite bioinformatics
applications such as sequence alignment and searches in ways that are not conventional. We have also been
involved in a theoretical study of distributed applications and the abstractions that can be used and are
required to support commonly occurring patterns in distributed applications [7].
By integrating SAGA with Google’s App Engine and by providing the relevant SAGA back-end interfaces
to Google’s BigTable, users will be able to use SAGA on the Google/IBM Cluster without any explicit
change to the operating environment. Additionally we will extend our deployment to work with locally
provisioned cloud-clusters using Eucalyptus [8], thus arguably providing for the first studies in Cloud-system
interoperability from an application’s perspective.
Our approach is to: 1) Extend our theoretical understanding of what commonly occurring data-access patterns
for data-intensive distributed applications are; 2) Define the abstractions – both programming and system –
that can be used to support these patterns; 3) Incorporate the necessary extensions in SAGA to enable it
to support data-centric patterns and abstractions thereof; 4) Write SAGA adaptors for GFS, BigTable, and
the Google/IBM cluster system, so that these programming patterns, become available to applications in
that environment; 5) Re-architect and develop the three sample applications using the extended SAGA; and
6) Deploy and test them on the Google/IBM active storage cluster in conjunction with a locally operated
cluster with active data management and policies.

1.1 Project Description

We have led the design and development of SAGA [9], a high-level interface for the effective development
and deployment of distributed applications, and we have also been involved in the use of SAGA for novel
application development [10, 11]. An important strand of our recent work with SAGA has been in the domain
of data-intensive applications, such as our recent implementation of frameworks that provide MapReduce
and All-Pairs programming abstractions. We have used the MapReduce framework to find the number of
occurrences of a gene in a given genome and the All-Pairs framework to do multiple alignment [12]. The
implementation of MapReduce using SAGA has been supported by Google (GSOC-08) [13]. The SAGA-
based MapReduce framework supports general purpose use of the MapReduce programming model. We plan
to investigate improvements in the efficiency of the framework over a range of applications, by using a general
purpose “active data” framework such as Bitdew [14]. SAGA will be interfaced with frameworks that provide
these “lower-level” APIs and the resulting system will be used for experimenting with various data-scheduling
and placement approaches. As part of the Google project, we are also implementing the ability for SAGA to
work using Hadoop [15] and BigTable [13, 16]
Our work as part of the funded research theme on Distributed Programming Abstractions [7], has lead to
arguably the most comprehensive analysis of distributed applications [17], how they are programmatically
constructed, what patterns commonly occur, and how they could possibly be supported. The work so far
has focused on the general class of distributed scientific applications and not on data-intensive applications.
Concurrently, we have been investigating theoretical ideas behind how clouds (and thus by generalization,
clusters such as the Google/IBM cluster) differ from traditional distributed systems, by focusing on system
semantics – importantly what the “restricted capabilities” of clouds imply for application usage modes and
programming interface [18].
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We propose to use three of the most challenging, important and commonly used data-intensive applications
to address questions about programming abstractions and models, as well as scheduling algorithms and
access patterns. Specifically, we will extend our theoretical understanding of what the commonly occurring
data-access patterns for data-intensive distributed applications by continuing to analyzing common data-
intensive applications as well as not so common data-intensive applications. We have carefully chosen our
applications – BLAST, Montage and LIGO data analysis – from three distinct applications classes in an
attempt to capture the critical characteristics of data-intensive applications. It is only by the analysis of real
scientific applications that we will be able to discern possible other patterns. There are many patterns, akin
to the Berkeley Dwarfs/Motifs [19], such as fan-in/fan-out [20], waiting to be discovered for data-intensive
applications. Finding such patterns, those that are common across a range of applications, has not been
done before. Once we have an understanding of the patterns, we will seek to understand the programming
and system abstractions that can support them.

Our next step will be to incorporate the required extensions in SAGA in order to provide the necessary
interfaces to support the abstractions, which in turn will be designed to support the patterns we derive. We
will create a suite of the most common patterns that we derive and will use SAGA and its extensions to
actually implement these patterns. In order to understand better which programming models work for data-
intensive scientific applications, it is also important to be able to conduct empirical studies with the ability to
select programming models and abstractions to support them, along with, but independent of the ability to
choose different underlying protocols/scheduling/cluster environments. Applications using our SAGA-based
framework will find precisely such an opportunity.

MapReduce is simple and powerful, and clearly the best known example of such a pattern, but will be only one
of the many needed programming models for data-intensive applications. Our stand-alone implementation [21]
is a proof of concept of SAGA’s ability to support commonly occurring patterns via infrastructure independent
implementation; note, Google’s MapReduce is tied to the Google File System. This forms the basis for our
claim that SAGA can be used to implement abstractions other than MapReduce which are usable over a
range of infrastructure.

We have insufficient detail on the Google/IBM cluster to surmise if it will be the right architecture for a range
of scientific problems and if so, for which. By providing the mechanisms such that our research efforts can
utilize a range of environments – Google/IBM, EC2, Eucalyptus-based – we will be able to determine the right
programming model for a given environment. A simple conclusion such as, the Google/IBM environment
is not good for LIGO is not very interesting or insightful. Thus, figuring out the right environment for a
range of applications is part of the research agenda. Unfortunately, there are limitations on the extent of
interoperability between different Cloud systems; current limitations in supporting interoperability arise at
both the system level as well as at the application level. Although interoperability is not a primary goal –
for the lack of interoperability with current set of applications is at best an irritant, not a performance or
usage hindrance – interoperability emerges as natural and desirable by-product of our approach. This will
be important for the next generation of applications, as well as those explicitly considered in this proposal.

SAGA provides the basis for implementing programming models for data-intensive applications, irrespective
of where those applications actually run – Google/IBM, EC2 or a Eucalyptus-based environment. The
application developer decides on the programming model to be experimented with – say MapReduce for a
genomics- application and All-Pairs for a search-based application – codes it up using SAGA, or as is more
likely, uses a SAGA-based MapReduce/All-Pairs framework, and tries to determine the best infrastructure to
run on. SAGA enables the application developer to decouple the programming model from the environment.

Our experiments will span locally-provisioned cloud clusters running Eucalyptus, thus providing an in-house
EC2 environment (and without the monetary cost of paying Amazon for cycles/data transfer), while also
using the Google/IBM cluster. An additional advantage of our SAGA-based approach and the ability to
have local environment that interoperates with the Google/IBM cluster is that among other things, this will
provide for the first studies in cloud interoperability from an application perspective. Rich Wolski (UCSB)
and the developers of Eucalyptus are committed to supporting this effort.
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We will focus on one very commonly used application – BLAST, but in its distributed and parallel incarnation
mpiBLAST, as outlined in the ParaMEDIC project [22]1 – and on two well known data-intensive applications
– Montage and LIGO. Montage and LIGO have not been rewritten for or deployed on clusters with active
storage; before we can aim to get the desired performance, we need to re-architect these application in
order to take advantage of the underlying “architecture”. All three applications will be re-architected and
developed using the extended SAGA, and then will be deployed and tested on the Google/IBM active storage
cluster in conjunction with a locally operated cluster with active data management and policies. These
three applications contain differing computational features. mpiBLAST has the simplest structure, which
can be thought of as distributing data, doing processing, and collecting results. LIGO data processing is
somewhat more complicated, adding to the challenges of mpiBLAST additional issues related to pipelining
and parameter sweeps. And finally, Montage is the most complex, as its structure really forms a general
many-level DAG.

We recognize that many of the important challenges in computing involve data movement, where coordination
is needed to ensure that the data are in the right place when the compute resources are ready to use them.
This is true at all levels, from within a chip to across a network; however, it is the regime in between
these two extremes – data access to/from local store by applications – that is of greatest challenge to
scientific application programmer and which is both the focus of this proposal as well as beneficiary of
better programming models and abstractions for data-access patterns.

A significant research outcome of this project will be a general purpose tool (extended SAGA) for addressing
many of the questions related to programming models and abstractions for data-oriented computing that
arise in the context of this solicitation. The second major research impact will be that three important
applications will have been re-architected and programmed so as to be able to use the Google/IBM cluster.
That in itself will address “how can old programs use these clusters”. Additionally it will provide insight
into how efficiently “old programs can, or cannot” utilize these cluster. Answers learned will be readily
generalizable to a wide range of application classes/types. The usage of active storage [23] will have been
shown to be a valid paradigm for a new range of scientific applications, which so far have been run in a more
conventional, compute-centered environment.

2 Background Work

2.1 SAGA: Basic Concepts

The Simple API for Grid Applications (SAGA) [1, 9] is a high-level programming interface being developed
as an approach to solve the fundamental challenge in distributed computing: reducing the barrier for the
development of truly distributed applications. To achieve this, it is critical to provide the right abstractions
at the applications level, to enable applications to be developed independent of the specifics of the underlying
deployment infrastructure (such as middleware distributions, cloud environments, etc.,) and applications,
once developed, must remain portable and immune to the evolution and dynamics of their environments.
Additionally, the programming interface should cover a broad range of different programming paradigms and
usage scenarios and therefore, it should not be restrictive.

We chose SAGA as a vehicle for our development in this work for three reasons. 1) We are familiar with
SAGA, as we have been driving its specification and implementation [9, 24, 25]. 2) SAGA is gaining attention
in the distributed community, and with the availability of C++, Python and Java implementations [9, 26],
is suited to target a wide user community. 3) Most importantly, SAGA has a number of design features that
make it an exceptionally well fitting choice for the work proposed in this project:

• Data representations in SAGA are abstracted in a data format and data model agnostic manner. Data
models and formats can, however, be added for specific application domains, without breaking the
vertical stack.

• At the same time, SAGA also has the means to abstract algorithmic elements of applications. We intent
to leverage this, as it is, in our opinion, a crucial element in data locality aware distributed computing.

• SAGA is designed to accommodate additional programming models and to support new programming
1winner of ISC2008 Outstanding Paper Award, of which Jha and Katz are co-authors
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Figure 1: Layered ordering of the various components to be developed and/or used in this proposal. At the very top level,
applications such as mpiBLAST, will be re-architected to utilize active storage systems. Some applications will be built using
frameworks that support commonly occurring patterns. The frameworks in turn will use SAGA which will be extended to
provide abstractions for data-intensive scientific applications. SAGA also provides homogeneous interface to underlying runtime
systems as Grids or Clouds. Through the development of appropriate adaptors for SAGA – such as BigTable and Hadoop,
applications can utilize different systems, thus enabling empirical testing of a variety of different programming models over a
range of environments.

patterns. It is extensible in multiple dimensions, again without breaking the vertical stack, and with
some guarantees for backward compatibility.

• SAGA has a strong focus on compute-centric distributed applications. Extending SAGA with data-
centric distributed programming models will allow SAGA to serve a wider array of application classes.

Our recent work has shown that SAGA is not only a programming interface on the brink of being a OGF
technical recommendation [1] that conforms to the above requirements, but that it also provides sufficient
abstractions allowing the creation of frameworks for different application models, such as MapReduce, All-
Pairs, various producer/consumer patterns, and truly adaptive applications (in terms of their resource and
data usage patterns). These models all use SAGA at different levels [12, 13, 27, 10].

SAGA had been designed with the fundamental aim of enabling compute-intensive applications to utilize
distributed environments, by providing a high-level, semantically consistent programming abstraction and
a uniform interface to distinct flavors and versions of distributed runtime environments. The abstractions
addressed by SAGA are currently file and replica management, job submission and control, remote procedure
calls, and streaming, are mainly oriented towards compute-intensive applications, and being added are service
discovery, information management, checkpoint management and application recovery.

Effective application development doesn’t just require simple interfaces to allow uniform access to the different
functionality provided by the deployment and runtime environments, as provided by SAGA. It also requires
support for higher level application models and patterns. SAGA addresses these challenges by providing
a programming interface that integrates common distributed programming abstractions while respecting
critical application level requirements: simplicity, stability, portability, uniformity, and support for higher
level programming models and abstractions. Figure 1 shows the overall application architecture of different
classes of applications built on top of SAGA-enabled, distributed programming abstractions.

We propose to develop more extensions to SAGA to support programming models and patterns for applica-
tions that focus on data-intense program flow, such as support for distributed file systems, data scheduling
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and placement, data streaming, exploitation of active storage, and data analysis pipelines. Toward that, we
will validate and extend SAGA so that it can serve as the basis for the implementation of different application
specific data access models and patterns. We will implement SAGA adaptors to enable access to different
underlying runtime environments, such as Google’s BigTable, Hadoop, etc.

Our current implementation of the SAGA API is based on a very modular and dynamic architecture. Since
this implementation must cope with a multitude of different dynamic requirements, the main goal has been
to maximize the decoupling of different components of the developed library to provide as much extensibility,
adaptability, and modularity as possible. This implementation is built based on a layered architecture: a
thin API layer is bound by the application and exposes the SAGA API as specified by OGF. This API
layer dispatches the API calls to dynamically selected and loaded components, called adaptors, connecting
the application to specific services and thus permitting dynamical binding to different runtime environments.
Consequently, distributed applications using SAGA can be transparently executed on environments for which
the respective set of adaptors exists. The complex task of updating runtime bindings is moved from the
application level to the provider level.

These architectural decisions are the fundamental preconditions to be able to extend the existing framework
for data-centric distributed applications, which will permit us to reuse most of the existing infrastructure.

Although SAGA remains a vibrant research project, it has matured sufficiently to be used on production-grade
cyberinfrastructure such as the TeraGrid. A recent paper [11] describing how SAGA was used to develop
a first principles distributed application and deploy it to utilize several distinct resources concurrently was
awarded a Performance Challenge Award (TeraGrid 2008 Conference). The award is testimony to the fact
that SAGA provides the correct level of abstractions for scientific applications and to the maturity of the
SAGA software environment to provide these abstraction for computer science research into access patterns
as well as production science computation.

2.2 SAGA: Recent Developments

As mentioned previously, the SAGA interface was designed with compute-centric scientific applications in
mind: those where data is not a first-class citizen of the computational life-cycle, but is dependent on the
compute requirements. While we will outline our plans to address this original design limitation in Section 4,
here we outline how we have nonetheless been working towards developing flexible SAGA-based frameworks
that can, in turn, support a range of data-intensive applications. Part of this work has been done with support
from the Google Summer of Code program – which has supported the advanced undergraduate students.

A simplified taxonomy of distributed applications that have already been developed using SAGA leads to
three classes:

• Legacy applications where local function calls are swapped for distributed function calls – for example,
replica exchange.

• Applications based upon frameworks that are developed using SAGA. There are multiple examples
of successful applications that use this approach, such as MapReduce, All-Pairs, and Migrating ap-
plications. Typically, the computational logic here is well separated from the distributed logic; the
application is unaware of the distribution environment, while the framework contains the distributed
logic.

• First principles distributed applications (such as adaptive applications [11]) where scientific applica-
tions are explicitly cognizant of the fact that they will operate in a distributed environment and the
computational logic is intertwined with the distributed logic.

Efforts to implement the above application classes using SAGA have been strongly motivated by our research
into distributed programming abstractions [7].

A MapReduce framework Using SAGA: MapReduce has emerged as a very successful and popular data-
parallel programming model. In the Google scheme, it is implemented using files and uses their Global File
Systems. However, the question arises of whether MapReduce is a viable programming model independent of
the underlying infrastructure? What are the limitations of the data-parallel programming model? To address
some of these questions, as well as to validate the abstractions that the SAGA interface supports, we have
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recently implemented a complete stand-alone MapReduce framework that does not depend on any specific
infrastructure! We have written adaptors to Hadoop, and will have adaptors to BigTable, thus providing the
ability to use SAGA-based MapReduce framework in native infrastructure as well. We are now developing (re-
architecting) applications that have not traditionally been written using MapReduce, and are understanding
their performance and limitations. Specifically, we are building sequence alignment and search applications
using the MapReduce framework. This is an illustrative example of the kind of empirical testing that is made
possible using SAGA: one can build infrastructure independent frameworks upon which applications can be
developed.

All-Pairs Framework for SAGA: All-Pairs is an abstraction for solving problems that have a combinatoric
element; i.e., that require all elements of a set A to interact with all elements of set B. These characteristics
hold for a surprisingly large set of biological, chemical, and mathematical problems. The challenge of ap-
plying the All-Pairs model is to efficiently co-locate data and computation. This problem space is not easily
mappable to MapReduce, but its implementation actually shows characteristics that are similar in terms of
compute/data co-location requirements, and in terms of scalability. We implemented the All-Pairs in SAGA,
and use it to perform multiple alignment [12].

Virtual Global File System: A straightforward way to make distributed functionality accessible to, e.g., legacy
applications, is to replace local system calls by their distributed implementations. We have been using this
approach to write a file system driver on top of SAGA using the FUSE library [27]. This provides seamless
access to remote filesystems, replica systems, and information services for any application using standard
file related system calls. This example demonstrates how SAGA as an abstraction supports higher level
application interfaces, allowing one to add distributed functionality to legacy applications without having to
touch the code base.

Global File System and BigTable: Also in recent work, we started to interface SAGA to the Google Global
Filesystem, and to BigTable on top of the GFS, in order to leverage the scalability and reliability features of
GFS and BigTable to higher level programming models, and to SAGA applications. Our implementation is
currently not really using the active data features of GFS; to do so is part of the project proposed here.

2.3 Research Theme on Distributed Programming Abstractions

Jha and Katz have been leading a two year long UK e-Science Institute theme on Distributed Programming
Abstractions [7, 17]. (Jha also serves as the PI of the theme.) In its first year, the theme has systematically
analyzed a range of real distributed scientific applications, defined a set of “vectors” used to characterize
these applications (into essentially non-overlapping classes), identified a series of patterns – programmatic,
deployment and usage modes – associated with these applications and begun the process of identifying suitable
abstractions to support these commonly occurring patterns. In the near future, the theme leaders will be
providing a gap analysis between existing tools and programming methods and the patterns identified. We
are also finalizing negotiations with Wiley to publish a book on Abstractions for Distributed Systems.

2.4 Cloud Computing

In a recent publication [18, 28], Jha (and co-authors) have analyzed the abstractions of the typical interfaces
that Cloud Systems present to the end user, and their semantic relationship to the typical interfaces that
Grids have. They found that Clouds are like narrow-Grids (i.e., discipline-specific Grids such as data-grids)
with explicit support for a well-defined set of usage modes. This leads to a simple user access interface, even
though the internals (architectural, deployment or management) of Clouds systems do not have to be any less
complicated than general-purpose grid. This publication also defines a Cloud’s affinity to be the relationship
between (real or virtual) resources, which determines the leading characteristics of that Cloud’s usage mode.

The paper posits that general-purpose Grids are difficult to use because the semantics of the interfaces are
not well defined, which in turn is because they are not designed with the aim to support explicit usage
modes. In contrast, Cloud interfaces should be (and so far for the most part are) semantically simpler and
well defined, for they are designed to support explicit usage modes (e.g. tasking farming, simple parameter
sweeps). In a period when Cloud computing remains at best a business model if not just a weakly-defined
concept, this paper has been credited with changing the focus to interface semantics and usage patterns as
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a way of defining clouds, or at least providing Clouds with an operative and working distinction from Grids.

Jha and Katz are organizing a workshop at the IEEE e-Science 2008 conference [29] to be held in conjunction
with Microsoft Research on Abstractions for Distributed Systems with a focus on abstractions for Cloud
systems – both programmatic abstractions as well as abstractions to support commonly occurring usage
modes and affinities such as data-data, compute-data, compute-compute.

2.5 Other Related Work

There is a large amount of research on distributed computing in general, and specifically on Grid systems,
Clouds, data centric computing, etc., much of which is relevant to the proposed work. Here we discuss some
examples of the most relevant recent work. Piernas and Nieplocha [23] provide a good overview of active
data and active storage concepts. Bitdew [14] implements several mechanisms to handle active data, i.e.,
for computation to be scheduled based upon where data resides, specifically placement, distribution and
replication. GridBatch [30] provides a batch-like cloud scheduler with active data abilities.

Commercial providers and industry, led by Google, Amazon, Yahoo, IBM, and others, have spearheaded the
design, development, deployment, and usage of Clouds. As most of these companies have not disclosed the
specific details of their implementations, the academic community is left to guess and to rely on popular press
accounts.2 It is clear that the focus of the commercial work has been on hosting and virtualization, not on
programming models. Most work in the usage of Clouds has not been on scientific applications, which have
different characteristics than typical commercial applications.

3 Applications

We will apply our research and development results to three applications: mpiBLAST [31], LIGO data anal-
ysis [3], and Montage [32]. These applications operate on very large data, represent large and disparate user
communities (genome sequencing, gravitational-wave analysis, astronomical imaging). These applications
are also very diverse; they represent rather different application architectures, from simple but massively
parallel mpiBLAST, to data transformation and analysis pipeline for LIGO, to data driven and DAG defined
workflow in Montage. The increasing architectural complexity allows us, to some extent, to incrementally
implement and evaluate the programming models which are the central topic of this project: models that
will support the simple (as in architecturally simple) mpiBLAST will form a subset of the models for the
more complex LIGO analysis pipeline, which in turn will form a subset of the full blown DAG-based Montage
workflow.

3.1 mpiBLAST

Basic Local Alignment Search Tool (BLAST) [2] used for sequence alignment is one of the most commonly
used bioinformatics applications. Thanks to rapid increases in sequencing technology, it is a well established
fact that the number of target sequences available – either as genomes or protein fragments, is increasing
exponentially. The implications for global optimal sequence alignments searches is thus very significant, i.e.,
the number of comparisons required is increasing exponentially. It is unlikely that alignment algorithms in
of themselves will be more efficient that those in use currently; thus without an effective implementation
(programming model) and deployment of these algorithms the exponential increase in the number of targets
will dominate (i.e., an effective slow-down!). Thus we propose that even though BLAST is an extensively
studied and has many optimized variants, it is an important application candidate for study on an Active
Data cluster such as the Google/IBM cluster.

In a classical Master-Worker (MW) application, tasks are created by the master and scheduled to the workers.
Once a task is scheduled, the worker has to download the data needed before the task is executed. In contrast,
a data-driven or Active-data approach requires that data are first scheduled to hosts. The programmer
does not have to code explicitly the data movement from host-to-host, neither to manage fault tolerance.
Programming the master or the worker consists of operating on data and attributes and reacting on data
copy. This simple, but illustrative example outlines how a simple reformulation of the implementation of

2The publicly available information about Google’s software, including Google File System, BigTable, All-Pairs, and Mapre-
duce, is a notable exception.
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BLAST – from a classical MW to a data-driven MW formulation may yield performance dividends on the
Google/IBM cluster (obviously assuming that the programming model will somehow be supported).

ParaMEDIC [22] is a framework for decoupling computation and I/O in applications that have large quantities
of both; it has been specifically used for mpiBLAST [31]. The framework differs from traditional distributed
I/O in that it uses application-semantic information to process the data generated by treating it as a collection
of high-level application-specific objects rather than as a generic byte-stream. It uses such information to
transform the data into orders-of-magnitude smaller metadata before transporting it over the distributed
environment and regenerating it at the target site.

The basic operation is (1) distribute the data, (2) send query to all parts of the data, and (3) combine partial
results. As such, ParaMEDIC/mpiBLAST seems ideally suited for an active storage system. However,
the data-model conscious operation will give us the opportunity to prove the overall architecture of our
implementation, with respect to the stated objectives of WP-1 (see Section 4).

3.2 LIGO

Gravitational waves are ripples in space-time, and their existence is a straightforward prediction of Einstein’s
theory of General Relativity. However, their predicted amplitude is small enough that only effects from
astrophysical systems are expected to be detected: the collision of two neutron stars in the closest galaxy
cluster would generate stretching of distances of 1 part in 1021 in the last few minutes before their coalescing
into a black hole. There is very hard evidence for the existence of gravitational waves from the evolution
of binary systems, but direct measurement has eluded the experimental effort in the US and worldwide,
since sensitivities to such small strains have been beyond the technology up to the present. The Laser
Interferometer Gravitational-wave Observatory (LIGO) [3], NSF’s largest project, is designed to make the
first direct detection of gravitational waves, but more importantly, to open a new window to the universe by
regularly detecting gravitational waves from compact systems such as black holes and neutron stars. [33]

The first phase of the LIGO detectors achieved the designed sensitivity in late 2005, and two years of data was
taken by the LIGO Scientific Collaboration (LSC), which has several hundred members. The data is being
analyzed to search for strong transients of unknown origin, signals from coalescing binary systems, continuous
sinusoidal signals from rotating stars, and continuous random signals from a cosmological background.

There has been no gravitational-wave signal detected yet, but the sensitivity of the detectors, while an
improvement of orders of magnitude over previous efforts, had a low likelihood for detecting signals from
known sources (although the current data is still being analyzed and could yield surprises). However, the
technology worked as designed, and there are now better technologies that will be used for achieving a
sensitivity ten times better, with a high likelihood of success in achieving the designed sensitivity. This
“Advanced LIGO” has predicted observation rates of tens of coalescences per year [34]. Advanced LIGO
received its initial funding this year, and is expected to begin taking data in about five years.

The analysis of LIGO data is very challenging and data intensive, and it is expected that the science goals
in data-taking runs will need original ways to use computing resources, if the observations are to be fully
exploited. Presently, the LIGO instruments (two detectors in Washington, and one detector in Louisiana,
closely associated with LSU) acquire 1 TB of data per day; this rate will likely be even larger for Advanced
LIGO. Louisiana State University has a large group dedicated to LIGO hardware and data analysis: the
Co-PI Gabriela González is very involved in issues related to data analysis and detector characterization

LIGO envisions two major types of data analysis: event-driven online analysis and bulk-wave pattern match-
ing for continuous time sources. In the first case, new data are fed into an analysis pipeline as they are
acquired, to try to detect interesting patterns in near real-time. A search for events like binary coalescing
systems, often considered a “flagship” search for LIGO, takes between 50 and 6000 cpu-days per day of data,
depending on the signal templates used. If such signals are detected, other instruments can be tuned to the
suspected source in order to confirm detection of an event.

However, the scientific potential is much larger than these searches, as well as more costly: a search for signals
from rotating stars on the whole sky takes about 109 cpu-days per day of data. These searches do not need
low latency, and are suitable for off-line strategies, where huge amounts of data (possibly taken over a long
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time) are sifted for interesting patterns in a non-real-time analysis pipeline. Also, the analysis can involve
parameter sweeps at several stages of that analysis pipeline. Also, the analysis can involve parameter sweeps
at several stages of that analysis pipeline. An example of the results of this analysis on a month’s worth of
data can be found was completed by the LSC [35].

The search for these sources will need new computing paradigms, involving distributed computing. Current
efforts involve computer time contributed by the general public 3, as well as analysis on a dedicated grid 4.
Using the Google/IBM cluster and generalizations thereof for the analysis of LIGO data – which is arguably
unique both in volume/amounts and qualitative challenges associated with the analysis – will allow the
exploitation of LIGO’s science potential for the most computationally expensive searches. The LSC has
explored some ways for analyzing data on the grid, with collaborators Brady and Koranda being some of
the experts leading the effort, especially related to data management. The group at UWM also is heavily
involved in LIGO data analysis.

Creating appropriate interfaces so that a user in the LSC can search a particular patch on the sky without
being limited by computing infrastructure will go a long way towards making gravitational-wave astronomy
begin to resemble modern astronomy, based on electromagnetic data taken by expensive instruments, analyzed
by users with different science goals. Given the amount of data to be processed and the exciting science to be
discovered, LIGO is a natural application for exploiting the results of the proposed research into extending
the SAGA interface and its supports for underlying programming models.

3.3 Montage

Many science data processing applications can be expressed as a sequence of tasks to be performed. One such
astronomy application builds science-grade mosaics from multiple images as if they were single images with
a common coordinate system, projection, etc. This software must preserve the astrometric and photometric
integrity of the original data, and rectify background emission from the sky or from the instrument using
physically-based models. The Montage project [4, 32, 36, 37, 38] delivers such tools to the astronomy
community. Montage has been used by the following projects: Spitzer Space Telescope Science Legacy
Projects SWIRE, GLIMSE, and SAGE; Spitzer’s Outreach Office; 2MASS; IRSA; the Hubble Treasury
program; iPHAS; COSMOS; Astrogrid; and IPAC Cool Cosmos.

Montage has been designed as a scalable, portable toolkit that can be used by astronomers on their desktops
for science analysis, integrated into project and mission pipelines, or run on computing grids to support
large-scale product generation, mission planning and quality assurance. It is part of the National Virtual
Observatory, and uses NVO-standard services to locate and access data.

There are often five steps to building a mosaic with Montage, though other processing is also possible:

• Select and acquire input images
• Re-projection of input images to a common spatial scale, coordinate system, and projection
• Modeling of background radiation in images to achieve common flux scales and background levels by

minimizing the inter-image differences
• Rectification of images to a common flux scale and background level
• Co-addition of re-projected, background-corrected images into a final mosaic

Montage accomplishes these tasks in independent, portable, ANSI C modules. This approach controls testing
and maintenance costs, and provides flexibility to users. They can, for example, use Montage simply to re-
project sets of images and co-register them on the sky, implement a custom background removal algorithm,
or define another processing flow through custom scripts. Montage input data files are between 512 pixels
and 6,000 pixels on edge, and output mosaics can be O(100,000) pixels on edge. Typical mosaics can involve
tens to tens of thousands of input files per band, and are usually one to three bands. Montage processing
can be done by running a script that runs the Montage modules in sequence, or on a parallel computer, the
execution of the instances of a single module can be run in parallel, or on a grid, a multi-level workflow can

3http://www.einsteinathome.org/
4http://www.lsc-group.phys.uwm.edu/lscdatagrid/
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be defined and mapped to resources, and then executed using tools such as Pegasus [39, 40, 41, 42], and
DAGMan [43]. Montage includes a module that can be used to build a DAG for this latter case.

The generality of Montage as a workflow application has led it to become an exemplar for those in the
computer science community who study workflows and workflow-based applications, such as those working
on: Pegasus, ASKALON [44], QoS-enabled GridFTP [45], SWIFT [46], SCALEA-G [47], VGRaDS [48], etc.

4 Proposed Research and Development Plan

Our plans for this project cover both research and development. On the research side, we plan to achieve a
better understanding of the data related properties of a variety of classical scientific applications, which will
give us insight into appropriate programming models, some of which are available, and others of which are
not. On the development side, we will provide these programming models to a small but high profile selection
of applications, which all have distinct characteristics, and are so far known not to map easily to the well
known data centric distributed (DCD) programming paradigms, such as MapReduce, Hadoop, All-Pairs, etc.

Note that our work will not require any special access to the cluster; it all can be done by a typical user.

The proposed work is thus structured into the following work packages:

• WP-1: Research of DCD related programming models
– Task-1.1: Survey of existing DCD programming models and applications

• WP-2: Implementation of DCD programming models, with SAGA
– Task-2.1: Data format and model abstractions in SAGA
– Task-2.2: Algorithmic encapsulation related programming models
– Task-2.3: Data Exchange and communication related programming models

• WP-3: Development of DCD applications
– Task-3.1: mpiBLAST
– Task-3.2: LIGO data analysis
– Task-3.3: Montage

• WP-4: Deployment and portability related work
– Task-4.1: Application deployment and scalability tests with the Google/IBM cluster
– Task-4.2: Experiments with Eucalyptus, GFS, BigTable, Amazon EC2/S3

WP-1: Research of DCD related programming models

Task-1.1 Survey of existing DCD programming models and applications

Jha, Katz, and participating researchers have been working on surveying compute-centric distributed (CCD)
programming models in the past [17]. In the course of this project, we intent to apply a similar approach
to data-centric distributed (DCD) programming models, and possibly to applications with aspects of both.
That survey (currently in a draft state) will pinpoint the dimensions, attributes required to describe the
respective programming models, to allow for a systematic and ordered approach to the problem space.

We do not require that survey be complete, nor that it span the whole space of possible models, but we
expect the survey to be (a) a useful guideline to application developers of DCD applications, and (b) to be
a useful tool in a coverage and gap analysis for DCD programming models.

Deliverables:

• D-1.1.1: Survey of existing DCD applications
• D-1.1.2: Survey of existing DCD programming models
• D-1.1.2: Coverage and gap analysis of DCD programming models

WP-2: Implementation of DCD programming models, with SAGA

The identified programming models from WP-1 are to be made available to application developers. At the
very minimum, those models required by the three application domains in the project (see Sections 3.1, 3.2,
and 3.3) are to be implemented, within SAGA (as motivated in Section 2.1). This work package thus depends
on WP-1, and feeds into WP-3.
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Task-2.1: Data format and model abstractions in SAGA

One of the seemingly biggest inhibitors for the use of SAGA in data intensive science is SAGA’s ignorance
of data syntax and semantics. Earlier work on that topic [49, 50, 51, 52, 53] conveys the impression that
it is impossible to implement efficient data intensive applications without prior knowledge, and appropriate
optimization, of the involved data models and formats.

But, the lesson to be learned from Google’s and other’s recent work on algorithms like MapReduce, frame-
works like Hadoop, and technologies like the GFS, is that it is indeed possible to provide an almost complete
vertical software stack in a mostly data-model and data-format agnostic manner, without any loss in perfor-
mance: applications running in these environments keep all data-model and data-format related assumptions
solely at the application level.

Interestingly, the SAGA approach to data model and format agnosticity is very similar: the saga::buffer
class is designed to encapsulate data transparently, and to leave syntactic and semantic interpretation of
these data to the application level.

We believe that a combination of the programmatic data abstractions available in SAGA, and of high level
programmatic data algorithms such as MapReduce, provides powerful and elegant tools for the application
developers with Grid background, i.e. the ‘standard’ SAGA target users.

• D-2.1.1: Design of a complete vertical model and format agnostic data management
• D-2.1.2: Map of the above design to well known DCD patterns, such as MapReduce

Task-2.2 Algorithmic encapsulation related programming models

Typically, MapReduce- and Hadoop-like algorithms allow application developers to insert custom hooks into
their runtime stack. These hooks basically form the kernel of the algorithm. The hooks are invoked once or
more times per unit of data. This way, the complete application is really data-driven, not compute-driven.

SAGA, on the other hand, provides means of event-driven computation, by allowing applications to implement
callbacks for specific events. This approach, however, is limited, as it neither allows for data- or compute-
related events, nor easily provides means for the application to specify new events.

We think that, for example by exploiting QT [54]-like signal/slot mechanisms, and by utilizing generic SAGA
data buffers (see above) as data exchange mechanism, we can elegantly combine data- and event-driven
paradigms and also provide the means to specify algorithmic hooks (such as required by MapReduce).

• D-2.2.1: Prove the viability of SAGAs algorithmic abstraction layers for the project’s applications.
• D-2.2.2: If required, provide additional means for algorithmic abstractions, as described.

Task-2.3 Data Exchange and communication related programming models

Similar problems as those discussed above have hindered the creation of data format and data model inde-
pendent communication and data exchange solutions. On the one end, XML- and RDF-based data model
languages are considered flexible and powerful but too slow and complex to use. On the other end, binary
data encapsulation and storage formats (i.e., RPC, CORBA, DCOM, HDF5) have existed many years, but
are considered of limited portability or flexibility.

Recent developments such as the Hadoop File System (based on the Google file system) and other distributed,
replicated, block-based file systems have shown that shared concurrent data access to structured data is not
prohibitively expensive. Similarly, Google Protocol Buffers [55] shows this for structured message exchange.

Both paradigms match well with SAGA’s abstractive approach to data exchange, and should, combined with
support for explicit and policy-based data co-location, provide a good foundation for DCD-style applications.

• D-2.3.1: Provide SAGA binding to Google Protocol Buffers, and prove ability to vertically integrate
data modal and format aware technology into SAGA,

• D-2.3.2: Extend SAGA for explicit and policy based data/compute co-location abilities
• D-2.3.2: Provide data synchronization, communication, storage, and persistency as needed in WP-3.
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WP-3: Development of data centric distributed applications

The results of WP-2 are a set of programming models, and possibly frameworks, that utilize active storage
systems for novel types of applications. WP-3 will apply these models to three application use cases: mpi-
BLAST, LIGO data analysis and Montage. The complexity of the respective distribution pattern increases
over the three tasks: mpiBLAST has a relatively simple, 1-dimensional distribution pattern; LIGO data
analysis forms a more complex pipeline with integrated parameter sweeps; and Montage will require support
for full-blown DAGs. The tasks will thus build upon the results of each other.

Task-3.1: mpiBLAST

As described in Section 3.1, mpiBLAST, and ParaMEDIC, seem ideally suited for an active storage system.
The data-model conscious operations (distribute the data, send query to all parts of the data, and combine
partial results) will give us the opportunity to prove the overall architecture of our implementation, in respect
to the stated objectives of WP-1.

The programming models of mpiBLAST applications seem mostly to focus on data centric, massive parallel
computation. That simple pattern will allow us to start to work on applications early on in the project, and
will also provide a useful foundation for the more complex patterns required by the other applications.

Deliverables:

• D-3.1.1: Exploitation of active storage for mpiBLAST applications
• D-3.1.2: Data model conscious implementation of mpiBLAST applications

Task-3.2: LIGO data analysis

LIGO bulk wave pattern matching, as described in Section 3.2, will be the subject of this task. Here, huge
amounts of data are sifted for interesting patterns in a non-real-time fashion, where the patterns of interest are
defined by target waveforms that are obtained by (computationally very expensive and difficult) simulations
of relativistic astrophysical events [56, 57]. This data analysis is not as simple as that in particle physics.
The LIGO data needs to undergo a relatively complex, non-linear set of transformations before the actual
pattern matching of waveforms can be performed. Also, the analysis can involve parameter sweeps at several
stages of that analysis pipeline.

Thus, this work package will need to handle two types of challenges, in respect to the topics targeted in this
proposal: (a) it needs to allow for pipeline type algorithms on large data sets, and (b) needs to be able to
accommodate parameter sweep like fan-out of these algorithms.5

Deliverables:

• D-3.2.1: Exploitation of active storage for pipeline type data flows
• D-3.2.2: Exploitation of active storage for parameter sweeps (fan-out)
• D-3.2.3: Mapping of LIGO data analysis pipelines to the above techniques

Task-3.3: Montage

Montage, as described in Section 3.3, is typical of many successful Grid applications: it comes with a wide
variety of use cases, works on a large variety of data sets of data, and is loosely coupled, but compute intensive.
Its workflow-like nature makes it comparatively difficult to execute on a active data storage system: while
the data locality of the input data can be pre-determined, the locality of intermediate data sets can only
be determined through the DAG that represents the specific Montage instance. This characteristic makes it
hard to optimize Montage for more massive parallel/loosely coupled frameworks like MapReduce or Hadoop.
Typical applications that use these frameworks can be thought of as having a one- or two-level DAG, and
are thus significantly easier to manage than a full-blown DAG-based workflow (or data flow) like Montage.

5Note that these items are preparing the more complex approach to complete DAGs on active storage systems, which is the
topic of the next task.
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This work package will particularly use the results from Task-2.2 (algorithmic encapsulation) and Task-2.3
(data exchange and communication) to exploit active storage for DAG based systems.

Deliverables:

• D-3.3.1: Programmatic means in SAGA to analyze DAGs, and to determine intermediate data location
• D-3.3.2: Utilization of active storage for scheduling of DAG components
• D-3.3.3: Mapping of Montage instances to active storage resources

WP-4: Deployment and portability related work

Due to the Google/IBM cluster’s integrated active-data capabilities, access to the cluster, provides an ex-
cellent opportunity to validate our data-centric distributed programming models. We will use the cluster to
(a) test and deploy SAGA, for the development work in WP-2, (b) install and deploy the applications from
WP-3, to support the WP-3 development work, and (c) perform stress tests, and scalability and performance
analysis of the resulting applications.

We intend, however, to go beyond the Google/IBM cluster, and in a second step, to prove the viability of our
work on other experimental facilities such as Eucalyptus and on commercial production Cloud environments
such as Amazon’s EC2/S3. The data management abilities of these environments are less sophisticated, or at
least have different strengths and abilities, than the Google/IBM cluster. This will allow us to (a) perform a
reality check of our approaches, (b) determine performance and scalability dependencies from the underlying
infrastructure, and (c) investigate barriers to application-level interoperability. In particular, for large scale
collaborations such as Montage or LIGO, this information is important in determining potential uptake of
the results of this project.

We can then deploy and experiment with additional and alternate programming models of active data – using
data schedulers such as Stork [58] and Bitdew [14]. While it is unclear what role such data-schedulers play
in systems that have active storage, it is clear that for any production science distributed cluster, there will
be a need to have a local cluster with heterogenous extensions to the larger cluster; the extensions arising in
the context of active data policies and management. Our approach provides this capability.

Task-4.1: Application deployment and scalability tests with the Google/IBM cluster

Perfect scalability is a goal in distributed computing that is rarely achieved, but in many ways, it defines
the success metric for large scale distributed applications. Scalability in data-centric distributed applications
means that the amount of data an application is able to handle is proportional to the number of resources
(data and compute) involved. Our experiments will strive to confirm that the implementation overhead for
our DCD programming models does not negatively impact either the performance or the scalability of the
respective applications, and to find remedial measures where they might.

Deliverables:

• D-4.1.1 Deployment of SAGA on Google/IBM cluster, including simple performance and scalability
tests

• D-4.1.2 Deployment, performance/scalability tests of mpiBLAST
• D-4.1.3 Deployment, performance/scalability tests of LIGO
• D-4.1.4 Deployment, performance/scalability tests of Montage

Task-4.2: Experiments with Eucalyptus, GFS, BigTable, Amazon EC2/S3

SAGA allows us to decouple the application programming model from the data and compute platform. Task
4.2 will show this by performing experiments outside CluE’s Google/IBM cluster, on a variety of platforms,
while measuring performance and scalability on each platform. This will enable us to compare system and
environment contribution and factors related to performance.

Deliverables:

• D-4.2.1 SAGA and application deployment on Eucalyptus, performance and scalability tests
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• D-4.2.2 SAGA and application deployment on GFS/BigTable, performance and scalability tests
• D-4.2.3 SAGA and application deployment on EC2/S3, performance and scalability tests

5 Intellectual Merit and Broader Impact

Intellectual Merit: It is clear that the “data deluge” or explosion of data is making processing that data
an increasingly important part of computing. It also appears that Clouds and active storage clusters may
be good platforms for such computing. The proposed work has the potential to advance knowledge across
all areas of science, technology, business, etc., where the processing of large amounts of data is currently a
bottleneck. If the work in providing abstractions and mechanisms for such general problems is successful,
it could transform the ease with which large amounts of computing is done, potentially opening whole new
areas to new communities who are currently unwilling to try to work with very large data sets. The team
proposing this work is highly qualified to carry it out, based on experience with distributed and parallel
programming in general, abstractions for distributed programming, and experience in data processing in two
separate fields of science. The plan of research is clearly well organized, and sufficient resources (computing,
software, abstractions, tools, application knowledge, and data) are available to provide a very good likelihood
of success.

Broader Impacts: The majority of the work in this proposal will be done at LSU, in an EPSCoR state.
We are also working on an statewide NSF EPSCoR project generally referred to as Cybertools [59], which is
aimed at advancing both tools/services and applications at the same time by using each to drive developments
in the other. This work will fit directly into the tools/services part of Cybertools. Cybertools also has a set
of education activities to which this work will be added. These include summer boot camps for high school
students, including predominately minority schools, and summer research projects for undergraduates, where
we successfully strive to find students from underrepresented groups. Additionally, Jha and Katz (with LSU
CS Prof. Gabrielle Allen) are currently planning a graduate course in Abstractions for Distributed Systems,
where lessons from this project will be taught.

LSU operates the LONI network and distributed high performance computing (HPC) resources for the state
of Louisiana. In this role, we provide statewide training to potential HPC and distributed computing users.
We will include the results of this work in our training workshops. LSU is also a driving member of SURAgrid,
so this work will be pushed out across the SURA region, which has been shown to have a relatively low level
of HPC and distributed computing knowledge and usage compared with the rest of the United States. LONI
(as led by LSU) is also a Resource Provider (RP) partner in the TeraGrid, which give us the opportunity to
push the results of this work to other national computing centers and their national audience.

6 Management, Staffing, and Outcomes

Project Management: Overall management of this work will be done by PI Jha who will liaise with
NSF and ensure that the entire LSU team and collaborators at UCSB and UWM work closely together by
coordinating regular conference calls and exchanges. Jha will also supervise the research programmer and
work on application analysis and programming abstractions. Co-PI Katz will provide Montage experience
and contribute to programming abstractions aspects. Co-PI Gonzalez and collaborators Brady and Koranda
will provide LIGO experience as well as general user feedback. SI Kaiser, who has 15 years software and
industrial experience, will supervise the software engineering aspects of the project.

A research programmer will be primarily responsible for most of the work related to analyzing applications,
extending SAGA, implementing abstractions, as well as providing frameworks for the common patterns. PI
Jha and co-PI Katz will work closely with the Research Programmer on most of these areas. One graduate
student for two years will be dedicated to the effort of implementing the abstractions and programming
models for LIGO’s data analysis requirements. This student will be jointly supervised by Gonzalez and
Katz. A second graduate student is being requested for partially doing the same for Montage.

Resource Justification: We are asking for one Research Programmer, one graduate student for two years,
and one graduate student for one year (in the second year of the project). We are asking for approximately
$20,000 per year in travel money, of which $5,000 per year is provisioned (as suggested by the solicitation)
for program related meetings; $5,000 per year is requested to support biannual visits for UWM (LIGO team
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members) and LSU collaboration; $2,500 per year is requested to support the collaboration between the
Eucalyptus and LSU teams, and approximately $7,500 is requested to attend related conferences and paper
presentations. Finally, PI Jha seeks salary support for one summer for contributions to research efforts and
the management of the project.

Result Dissemination: SAGA is currently available under the Boost OSS License v1.0. The updates to
SAGA that are made as a result of this project will be made available under the same license. Other resulting
lessons from this work will be publicized through workshops, conferences, and papers. In conjunction with the
book on Abstractions for Distributed Systems, the patterns, abstractions to support these patterns including
code examples will be made available via the PI and co-PI (Katz) webpages and will be used as material for
(planned) Graduate course in Abstractions for Distributed Systems.

Relevant Prior Research Funded by NSF

Jha has recently moved to the US from UK and has not been a PI on an NSF grant. He is the PI of the SAGA
project and research theme on Distributed Programming Abstractions, both of which are current and funded
by the EPSRC – the UK’s national-level science foundation. Jha is a SI on several NSF-funded projects,
including the NSF-RII Cybertools project and HPCOPS. Jha also has small grants from Google (“Exposing
the Power of Google using SAGA: A SAGA implementation of MapReduce”) and the US NIH relevant to
this proposal.

Katz is a Co-PI and project lead for LONI’s participation in the TeraGrid [60]: “HPCOPS: The LONI Grid –
Leveraging HPC Resources of the Louisiana Optical Network Initiative for Science and Engineering Research
and Education,” NSF award OCI-0710874, $2m from 10/2007 to 9/2009. In this work, the LONI system,
Queen Bee, was integrated into the TeraGrid on schedule, and the national community is satisfied with the
system, based on higher-than-expected usage. His work that is most closely related to this proposal has been
as a member of the Montage team under NASA funding.

Gonzalez and Brady are leading members of the LIGO Scientific Collaboration (LSC), where they were co-
chairs of the working group on searches of compact binary coalescences until end of 2007. This working group
wrote several papers for the LSC, on searching signals in data taken in the several science runs with LIGO
detectors (a complete list of papers is found in www.ligo.org, under “Observational Results”). Gonzalez is
a recognized member of the experimental gravitational-wave community, where she has contributed to the
successful commissioning and diagnostic of the LIGO detectors; she has received continued funding from NSF
for this purpose since 1998.

7 Conclusions

The work proposed as part of “Abstractions and Programming Models for Data Intensive Science” is a
balanced mix of theoretical work, empirical testing, and re-architecting and deploying three important ap-
plications that represent three distinct application classes. The three applications, while being mostly data-
intensive, are not without computational challenges.

The first major product and research outcome of this project will be a general purpose tool usable to
address many of the questions related to programming models and abstractions for data-intensive computing.
A second major research impact will be that three important applications will have been re-architected
and programmed so as to be able to use the Google/IBM cluster and other environments. We will thus
address “how can old programs use these” clusters, while also providing insight into the limitations of such
environments. Answers learned will be readily generalizable to a wide range of application classes and types.
The usage of active storage [23] will have been shown to be a valid paradigm for a new range of scientific
applications, which so far have been run in a more conventional, compute-centered environment.

Real, scientific applications and a focus on their effective usage of new systems form a central theme of our
proposal. We hope that this will set the tone in these early days of Clouds and active storage clusters, so that
the evolution of such systems will consider the centrality of applications – something that may be argued
was not the case for traditional Grids.
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