
AN HPC FRAMEWORK FOR LARGE SCALE SIMULATIONS AND

VISUALIZATIONS OF OIL SPILL TRAJECTORIES

Jian Tao
1,*

, Werner Benger
1
, Kelin Hu

2
, Edwin Mathews

1,3
, Marcel Ritter

1,4
, Peter Diener

1,5
,

Carola Kaiser
1,6

 , Haihong Zhao
2
, Gabrielle Allen

1,7
 and Qin Chen

1,2

ABSTRACT

The objective of this work is to build a high performance computing framework for simulating,

analyzing and visualizing oil spill trajectories driven by winds and ocean currents. We adopt a particle

model for oil and track the trajectories of oil particles using 2D surface currents and winds, which can

either be measured directly or estimated with sophisticated coastal storm and ocean circulation models.

Our work is built upon the Cactus computational framework. The numerical implementation of the

particle model as well as the model coupling modules will become crucial parts of our upcoming full 3D

oil spill modeling toolkit. Employing high performance computing and networking, the simulation time

can be greatly reduced. Given timely injection of the measurement data, our work can be helpful to

predict oil trajectories and facilitate oil clean up, especially after a tropical cyclone.

Keywords: Coastal hazard; Oil spill; HPC; Cyberinfrastructure

INTRODUCTION

Numerical modeling of oil spills is an important capability for tracking the fate and

transport of oil released into a marine environment. With the aid of real time observations or

sophisticated coastal storm models, such numerical simulations can provide useful information

such as the extent and magnitude of the spilled oil, the timeline of oil spreading, etc. for quick

response to oil spill events. High performance computing systems enable us to carry out such

numerical simulations in a more timely and accurate manner. To react to oil spill events such as

the Deepwater Horizon catastrophe, being timely in carrying out such numerical simulations is

very important. However, the large amounts of observational and simulation data as well as the

theoretical and numerical complexity involved in modeling oil spills using high performance

computing provide a challenge to the computational science community. Furthermore, numerical

1 Center for Computation & Technology, Louisiana State University,
* Corresponding author, email: jtao@cct.lsu.edu, fax: (225)578-5362
2 Department of Civil & Environmental Engineering, Louisiana State University
3 Department of Mechanical Engineering, Louisiana State University
4 Unit of Hydraulic Engineering, Department of Infrastructure, University of Innsbruck
5 Department of Physics, Louisiana State University
6 School of the Coast and Environment, Louisiana State University
7 Department of Computer Science, Louisiana State University

2

modeling for oil spills involves multiple spatial scales, and associated temporal scales, from as

small as oil wells to as large as the whole Gulf of Mexico. Different spatial scales have to be

considered in order to build a comprehensive 3D oil spill model that can be used to solve

realistic problems. With support from the Louisiana Optical Network Initiative under authority of

the Louisiana Board of Regents, we have carried out a demonstration research and development

project to lay the foundations for an upcoming comprehensive 3D oil spill model. We model and

visualize the trajectories an oil spills in severe storms using numerical simulation with high

performance computing. The modular design of our software, with uses the Cactus framework,

enables us to easily integrate the oil spill model with coastal storm models to carry out numerical

simulations of oil spills in different weather conditions.

COMPUTATIONAL INFRASTRUCTURE

Figure 1: The left diagram shows the internal structure of a typical Cactus thorn. A high level
view of a typical Cactus application is shown on the right diagram, where the Cactus
Specification Tool (CST) is to provide bindings for the flesh and all Cactus thorns. The Cactus
Computational Toolkit (CCTK) provides a range of computational capabilities, such as parallel
I/O, data distribution, or checkpointing via the Cactus flesh API.

With the ever increasing complexity in both hardware and software, the development and

maintenance of large scale scientific applications has become an intimidating task. This task

becomes even more complex when we need to integrate together different physics models each

with their own differing characteristics. One solution to enable such application development

issues is to build and utilize computational frameworks (or cyberinfrastructures). A

computational framework can free application developers from low-level programming and

enable effective usage of HPC systems. Programming based on a computational framework can

3

be more productive due to the abstractions and data structures provided by the framework that

are suitable for a particular domain. A successful computational framework often leads to a more

collaborative and productive work environment, which is crucial for multidisciplinary research.

In this section we will describe the Cactus - Carpet computational framework upon which this

work is built.

CACTUS COMPUTATIONAL FRAMEWORK

The Cactus Framework (Goodale et al., 2003) was developed to enhance programming

productivity and enable large-scale science collaborations. The modular and portable design of

Cactus enables scientists and engineers to develop independent modules in Cactus without

worrying about portability issues on different computing systems. The common infrastructure

provided by Cactus also enables the development of scientific codes that reach across different

disciplines. This approach emphasizes code reusability, leads naturally to well designed

interfaces, and to well tested and supported software. As the name Cactus indicates: the Cactus

framework contains a central part called the flesh, which provides an infrastructure and interfaces

to multiple components or thorns in Cactus terminology. Built upon the flesh, thorns can provide

capabilities for parallelization, mesh refinement, I/O, check-pointing, web servers, coastal

modeling, oil spill simulation, etc. The Cactus Computational Toolkit (CCTK) is a collection of

thorns that provide basic computational capabilities. The application thorns can make use of the

CCTK via calling Cactus flesh API (see Figure 1). In Cactus, the simulation domain is

discretized using high order finite differences on block-structured grids. The Carpet library of

Cactus enables a basic recursive block-structured AMR algorithm by Berger-Oliger [Berger and

Oliger, 1984]. The time integration schemes used are explicit Runge-Kutta methods and are

provided by the Method of Lines time integrator. The Cactus framework hides the detailed

implementation of Carpet and other utility thorns from application developers and separates

application development from infrastructure development.

CARPET ADAPTIVE MESH REFINEMENT LIBRARY

The Carpet AMR library (Schnetter et al., 2004, Carpet Website,) is a layer in Cactus to

refine parts of the simulation domain in space and/or time, where each refined region is a

block-structured regular grid, allowing for efficient internal representations as simple arrays. In

addition to mesh refinement, Carpet also provides parallelism and load distribution by

4

distributing grid functions onto processors. To enable parallel execution on multiple processors,

our finite differencing stencils require an overlap of several grid points or ghost zones between

neighboring processors‟ sub domains. The inter-process communication is done in Carpet by

calling external MPI libraries. In each process, OpenMP is used to further enhance the scalability

and performance.

VISUALIZATION INFRASTRUCTURE

For three-dimensional visualization we employ the Vish Visualization Shell, a highly

modular research framework to implement visualization algorithms. Similar to the cactus

computational framework it provides a micro-kernel with plugins which are loaded at runtime,

allowing for developers to independently implement specific aspects without interfering each

other. As a framework it is designed for exploratory scientific visualization rather than providing

static solutions for a limited set of data. We apply experimental visualization methods that had

been developed for other application areas to find features and properties in this oil spill

simulation data set that are not obvious through conventional visualization approaches. As Vish

allows overriding each aspect of the visualization on a very fine level including

hardware-oriented GPU programming, we achieve high performance and flexibility. For instance

as part of this exploration we experimented with using a scalar field along the particle

trajectories as height, similar to a height field, in order to display particle properties better than

just colorization. The method of “Doppler speckles”, originally developed to be applied upon

astrophysical datasets, turns out to be useful finely resolved vector fields where vector arrows are

of limited use due to increasing visual clutter. Integration of data sets from various sources is

addressed via converting them into HDF5 using the F5 layout, which allows efficient handling of

massive datasets through one common interface.

FRAMEWORK FOR MODELING OIL SPILL TRAJECTORIES

The design and development of the oil spill simulation framework follow the same

philosophy behind Cactus. We emphasize portability and modularity while improving

performance and scalability. We make intensive use of the Cactus computational toolkit for time

integration, parallelization, interpolation, I/O, checkpointing, timing, etc.

5

Figure 2: The oil spill modules can be separated into two groups. The interface modules define
fundamental variables that can be shared among different modules. The application modules
define operations that can be applied to the fundamental variables. Each application module is
in charge of one or more tasks in the overall work flow and is responsible for its own input data.

The oil spill modules can be categorized into two groups: interface modules and application

modules. The interface modules define fundamental variables that can be shared among different

application modules while the application modules define operations that can be applied to the

fundamental variables. While the application modules or mathematical operations can be greatly

different depending on models used, the interface or the primary unknowns shall stay the same.

As shown in Figure 2, we currently define only two interface modules in our framework.

Depending on the physical and chemical processes considered, other modules can be added. For

simulating the oil spill trajectories on ocean surface, all variables are defined in 2D.

The CoastalBase module defines the depth-averaged ocean current velocity and wind

velocity 10 meters above ocean surface as fields that depend on the spatial grid at each time step.

The variables are initialized by the application module CoastalInit, either from detections

6

directly or from data generated in coastal and circulation simulations. In our current setup, we

read the mesh file and simulation data from ADCIRC (Luettich and Westerink, 2004; Westerink

et al., 2008) and interpolate the data using the inverse distance weighted method from triangular

unstructured mesh used in ADCIRC to Cartesian uniform mesh in Cactus. The ocean current

velocity and wind velocity can be calculated directly from the fundamental variables defined in

other integrated modules. For instance, in building a comprehensive full 3D oil spill model, the

3D velocity field of both ocean current and oil in water column shall be calculated during the

simulation to estimate the current velocity in order to simulate oil slicks on the surface.

The OilSpillBase module defines the positions and advection velocity of oil parcels. Different

from the variables defined in CoastalBase, these variables are parcel wise, i.e., they are not

treated as Eulerian fields but as properties of each parcel in the Lagrangian point of view. Such a

combination of different numerical methods enables us to treat oil spill simulations more

efficiently. The OilSpillInit module initializes the position and velocity of oil parcels from a

given initial profile or some field observation data, which can be processed externally as a spatial

distribution of oil.

The evolution of oil parcels is carried out in the OilSpillEvolve module. It takes the ocean

current velocity and wind velocity from two interface modules respectively after they are

updated at each time step by other application modules and update the position of all the oil

parcels. For time integration, we use the method of lines provided by the MoL module in CCTK.

The MoL module provides several time integration schemes, e.g., Rouge Kutta, Iterative Crank

Nicholson. These numerical schemes together with other physical and numerical setups can be

selected by users in a parameter file. The MoL module provides a mechanism for a certain type

of multi-physics coupling where the right hand side of the evolution equations, i.e., the particle

velocity in our particle model, can be separated into multiple independent terms which depend

on the physical model considered respectively. Each model will just need to update the right

hand side without even knowing the existence of other models. Application modules developed

upon MoL will be modular by design.

HURRICANE SIMULATION

We improved a parametric analytical wind model for asymmetric hurricanes and merged it

with the large-scale background wind field provided by the National Center for Environmental

7

Prediction (NCEP). The improved asymmetric hurricane wind model is developed from the

asymmetric Holland-type vortex model (Mattocks and Forbes, 2008). The model creates a

two-dimensional surface wind field based on the National Hurricane Center (NHC) forecast (or

observed) hurricane wind point values, namely the maximum wind, radius of maximum wind,

the specified (34, 50, and 64-knot) wind intensities and their radii in 4 quadrants. Driven by

hurricane wind fields, a fully-coupled wave-surge model (SWAN+ADCIRC) of Dietrich et al.

(2010) is employed to calculate storm surge and depth-integrated currents. The ADCIRC model

solves the depth-averaged barotropic shallow-water equation in spherical coordinates using a

finite element solution (Luettich and Westerink, 2004; Westerink et al., 2008). The wave model

[Booij et al., 1999] solves the wave action balance equation without any a priori restrictions on

the spectrum for the evolution of the wave field. The coupled model can include the interaction

of wave and surge in coastal regions. SWAN and ADCIRC use the same unstructured SL15 mesh

with about 2.4 M nodes and 4.7M elements. The mesh resolution varies from 24km in the

Atlantic Ocean to about 50m in Louisiana and Mississippi. Seven tidal constituents are

considered by harmonic constants at the open boundary. The time steps are 1 hr and 1 s for

SWAN and ADCIRC, respectively. The coupled model runs in parallel on a supercomputer from

the Louisiana Optical Network Initiative (LONI), Queenbee, which has 668 nodes and each node

has two 2.33 GHz Quad Core Xeon 64-bit Processors and 8 GB Ram. By using 102 nodes (816

cores), the running time is about 1 hr for the simulation of one actual day.

Figure 3: A snapshot of storm surge distribution near Louisiana coast at the time of 10:00 UTC,
09/01/2008, during Hurricane Gustav. The interval of contour line is 0.1m. The black arrows
denote the wind vectors at the same time.

8

Figure 3 shows a snapshot of storm surge distribution during Hurricane Gustav. At this time

(10:00 UTC, 09/01/2008), the hurricane center was near the Louisiana coast. The eastern winds

to the front right of the hurricane caused a surge setup (about 3m) at the Breton Sound and the

east bank of Mississippi River. The Northern and North-eastern winds to the front left of the

hurricane blew the water offshore and caused about 1m setdown of storm surge along the

Louisiana coast (from 92
0
 W to 90.5

0
 W).

VISUALIZATION

Figure 4: Path-lines of Oil parcels in hurricane Gustav simulated in Cactus and viusualized in
Vish. The path-lines are colored by arclength of the lines. The particles move in the XY-plane.
An additional scalar field is illustrated by offsetting the line positions in Z-direction, illustrating
the curvature of the trajectories. This marks positions of the particles with high changes in
directions. The ADCIRC model is the source of the elevated water surface which is shown as an
elevated and color-mapped surface. Also the wind vector-field which is shown using
vector-speckles[Benger et al., 2009a] on the terrain grid is provided by the ADCIRC data. An
aligned 50m resolution satellite image shows the Mississippi delta in the foreground. A 500m
resolution covers the background. The arrow illustrates North direction.

9

Proper visualization of the oil spill trajectories addresses two aspects: visual analysis of the

simulation data itself and providing a context based on external data. Interfacing external data

faces challenges of incompatible data models (Nativi et al., 2004) (systematic obstacles) and file

formats (Benger, 2009) (technical obstacles). Based on previous work visualizing hurricane

Katrina (Benger et al., 2006) we superimpose the oil spill trajectories on top of satellite imagery

of the Gulf coast. Visual enhancements of the oil transport is provided by generic techniques to

visualize vector fields along curves, such as Doppler speckles (Benger et al., 2009a), which

provides a visual perception of the flow that is superior to arrow icons. The Vish visualization

shell (Benger et al., 2007) is used as a framework for visualization, which is very suitable for

computing and displaying path integration lines and evolution fronts within large data sets

[Benger et al., 2009b, Bohara et al., 2010b]. While for the particular application here the particle

trajectories are only considered within the ocean surface, thus reducing the problems to two

dimensions, embedding these data into a three-dimensional environment allows a more realistic

interactive impression.

Certain tools for the analysis of pathlines by means of curvature and torsion (Benger and

Ritter, 2010) are available in this context, providing indicators for the mixing of fluids (Bohara et

al., 2010a), which are oil and ocean water in this case.

NUMERICAL SETUP AND SIMULATION RESULTS

In preparing an oil spill simulation, we took the Hurricane Gustav data from ADCIRC and

SWAN simulations (see section „Hurricane Simulation‟) using the unstructured SL15 mesh with

2.4M nodes and 4.7M elements. We then interpolated the depth-averaged current velocity field

CU

 and wind field WU

 data onto a 100×100 Cartesian uniform grid. The inverse distance

weighted method is used to carry out the interpolation. We calculated the advection velocity field

WWCCa UkUkU

 , where Ck and Wk are the current and wind drift factor and were set to 1.0

and 0.03 respectively. The initial oil spill profile was created by randomly generating 1,000,000

oil parcels near the contaminated area. The advection velocity of each oil particle was

interpolated from the advection velocity field and the position of the oil parcels was then updated

using the Iterative Crank Nicholson method with a time interval of an hour. Only the advection

terms were considered in our simulations. We carried out a demonstrative run in parallel with 4

MPI processes on a workstation with two dual core AMD Opteron processors and 8 GB memory.

10

On the workstation, each time step took about 40 seconds after the weight function for

interpolation was calculated and stored in memory before the time integration starts. The

calculation of the weight function alone took about 20 minutes. The simulation results are shown

in Figure 5.

Figure 5: Visualization of a gulf coast oil spill simulation with Gustav hurricane data at three
different time steps (down-sampled by a factor of 50). The read points represent oil parcels, and
the black arrows represent horizontal wind velocity field 10 meters above the ocean surface.
The length of the arrows is proportional to the wind speed. The background is the storm surge
distribution. The interval of contour line is 0.1m.

CONCLUSION

In this article we have presented our recent work towards building a framework for

simulating, analyzing and visualizing oil spill trajectories driven by winds and ocean currents

11

using high performance computing. We took the ocean current velocity and wind data as input

and tracked the trajectories of drifting oil parcels. Based upon the presented framework, we can

integrate different coastal and oil spill models for tracking oil spill trajectories. The

Cactus-Carpet computational infrastructure used by this work enables us to carry out oil spill

simulations in parallel. It also gets us ready to address multiple scale problems in building a

comprehensive 3D oil spill model with an adaptive mesh refinement library fully integrated.

ACKNOWLEDGMENTS

This work, a High Performance Computing (HPC) R&D Demonstration Project for Oil Spill

Disaster Response, is supported by the Louisiana Optical Network Initiative under authority of

the Louisiana Board of Regents. The development of the computational cyberinfrastructure is

supported by the CyberTools project via NSF award 701491. This work used the computational

resources Eric, Queenbee, Tezpur at LSU/LONI and the NSF TeraGrid under grant number

TGOCE100013. Thanks also go to Soon-Heum Ko, Frank Loeffler, and Erik Schnetter for useful

discussions. The study has been supported in part by a grant from the Office of Naval Research

Coastal Geosciences Program (N00014-07-1-0955).

REFERENCES

Benger, W. (2009), “On safari in the file format djungle - why can‟t you visualize my data?”

Computing in Science & Engineering, 11(6):98–102. Feature Articlein “Computing Now”

http://www.computer.org/portal/web/computingnow/1109/whatsnew/cise.

Benger, W., G. Ritter, and R. Heinzl (2007), “The concepts of vish”, In 4th High-End

Visualization Workshop, Obergurgl, Tyrol, Austria, June 18-21, 2007, page in print. Berlin,

Lehmanns Media-LOB.de.

Benger, W., G. Ritter, S. Su, D.E. Nikitopoulos, E. Walker, S. Acharya, S. Roy, F. Harhad, and

W. Kapferer (2009a), “Doppler speckles - a multipurpose vectorfield visualization technique

for arbitrary meshes”, In CGVR’09 - The 2009 International Conference on Computer

Graphics and Virtual Reality.

Benger, W., and M. Ritter (2010), “Using Geometric Algebra for Visualizing Integral Curves”, In

Hitzer, E. M., and V. Skala, editors, GraVisMa 2010 - Computer Graphics, Vision and

Mathematics for Scientific Computing. Union Agency - Science Press.

Benger, W., M. Ritter, S. Acharya, S. Roy, and F. Jijao (2009b), “Fiberbundle-based visualization

of a stir tank fluid”, In 17th International Conference in Central Europe on Computer Graphics,

Visualization and Computer Vision, pages 117–124.

Benger, W., S. Venkataraman, A. Long, G. Allen, S.D. Beck, M. Brodowicz, J. MacLaren, and E.

Seidel (2006), “Visualizing Katrina - Merging Computer Simulations with Observations”, In

Workshop on state-of-the-art in scientific and parallel computing, Umeå, Sweden, June 18-21,

2006, pages 340–350. Lecture Notes in Computer Science (LNCS), Springer Verlag.

http://www.computer.org/portal/web/computingnow/1109/whatsnew/cise

12

Berger, M. J. and J. Oliger (1984), “Adaptive mesh refinement for hyperbolic partial differential

equations”, Journal of Computational Physics. 53, 484–512.

Bohara, B., W. Benger, M. Ritter, S. Roy, N. Brener, and S. Acharya (2010a), “Time-curvature

and time-torsion of virtual bubbles as fluid mixing indicators”, IADIS Computer Graphics,

Visualization, Computer Vision and Image Processing 2010 (CGVCVIP 2010).
Bohara, B., F. Harhad, W. Benger, N. Brener, S. Iyengar, M. Ritter, K. Liu, B. Ullmer, N. Shetty, V.

Natesan, C. Cruz-Neira, S. Acharya, and S. Roy (2010b), “Evolving time surfaces in a virtual stirred

tank”, Journal of WSCG, 18(1-3):121–128.

Booij, N., R.C. Ris, and L.H. Holthuijsen (1999), “A third-generation wave model for coastal

regions, part 1, model description and validation”, Journal of Geophysical Research, 104

(C4):7649–7666.

Carpet Website, “Adaptive mesh refinement with Carpet”, http://www.carpetcode.org/.

Goodale, T., G. Allen, G. Lanfermann, J. Massó, T, Radke, E. Seidel, and J. Shalf (2003), “The

Cactus framework and toolkit: Design and applications”, In High Performance Computing for

Computational Science - VECPAR 2002, 5th International Conference, Porto, Portugal, June

26-28, 2002, pages 197–227, Berlin. Springer.

Dietrich, J. C., S. Bunya,J. J. Westrink, B. A. Ebersole, J. M. Smith, J. H. Atkinson, R. Jensen, D.

T. Resio, R. A. Luetich, C. Dawson, V. J. Cardone, A. T. Cox, M. D. Powell, H. J. Westerink,

and H. J. Roberts (2010), “A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind

Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part II: Synoptic

Description and Analysis of Hurricanes Katrina and Rita”, Monthly Weather Review, 138,

378-404

Hutanu, A., E. Schnetter, W. Benger, E. Bentivegna, A. Clary, P. Diener, J. Ge, R. Kooima, O.

Korobkin, K. Liu, F. Loffler, R. Paruchuri, J. Tao, C. Toole, A. Yates, and G. Allen (2010),

“Large Scale Problem Solving Using Automatic Code Generation and Distributed

Visualization”, Scientific International Journal for Parallel and Distributed Computing, 11

(2):124016.

Luettich, R. A. and J. Westerink (2004), “Formulation and numerical implementation of the

2D/3D ADCIRC finite element model version 44.xx”, 74pp. [Available online at

http://adcirc.org/adcirc_theory_2004_12_08.pdf.]

Mattocks, C., and C. Forbes (2008), “A real-time, event-triggered storm surge forecasting system

for the state of North Carolina”, Ocean Modelling, 25, 95-119.

Nativi, S., B. Blumenthal, T. Habermann, D. Hertzmann, R. Raskin, J. Caron, B. Domenico, Y.

Ho, and J. Weber (2004), “Differences among the data models used by the geographic

information systems and atmospheric science communities”, In Proceedings American

Meteorological Society - 20th Interactive Image Processing Systems Conference.

Schnetter, E., S.H. Hawley, and I. Hawke (2004), “Evolutions in 3D numerical relativity using

fixed mesh refinement”, Class. Quantum Grav., 21(6), 1465–1488. gr-qc/0310042.

Westerink, J., R. Luettich, J. Feyen, J. Atikinson, C. Dawson, H. Roberts, M. Powell, J. Dunion,

E. Kubatko, and H. Pourtaheri (2008), “A Basin to Channel Scale Unstructured Grid

Hurricane Storm Surge Model Applied to Southern Louisiana”, Monthly Weather Review,

136, 833-864.

http://www.carpetcode.org/
http://adcirc.org/adcirc_theory_2004_12_08.pdf

