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ABSTRACT 

The objective of this work is to build a high performance computing framework for simulating, 

analyzing and visualizing oil spill trajectories driven by winds and ocean currents. We adopt a particle 

model for oil and track the trajectories of oil particles using 2D surface currents and winds, which can 

either be measured directly or estimated with sophisticated coastal storm and ocean circulation models. 

Our work is built upon the Cactus computational framework. The numerical implementation of the 

particle model as well as the model coupling modules will become crucial parts of our upcoming full 3D 

oil spill modeling toolkit. Employing high performance computing and networking, the simulation time 

can be greatly reduced. Given timely injection of the measurement data, our work can be helpful to 

predict oil trajectories and facilitate oil clean up, especially after a tropical cyclone. 
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INTRODUCTION 

Numerical modeling of oil spills is an important capability for tracking the fate and 

transport of oil released into a marine environment. With the aid of real time observations or 

sophisticated coastal storm models, such numerical simulations can provide useful information 

such as the extent and magnitude of the spilled oil, the timeline of oil spreading, etc. for quick 

response to oil spill events. High performance computing systems enable us to carry out such 

numerical simulations in a more timely and accurate manner. To react to oil spill events such as 

the Deepwater Horizon catastrophe, being timely in carrying out such numerical simulations is 

very important. However, the large amounts of observational and simulation data as well as the 

theoretical and numerical complexity involved in modeling oil spills using high performance 

computing provide a challenge to the computational science community. Furthermore, numerical 
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modeling for oil spills involves multiple spatial scales, and associated temporal scales, from as 

small as oil wells to as large as the whole Gulf of Mexico. Different spatial scales have to be 

considered in order to build a comprehensive 3D oil spill model that can be used to solve 

realistic problems. With support from the Louisiana Optical Network Initiative under authority of 

the Louisiana Board of Regents, we have carried out a demonstration research and development 

project to lay the foundations for an upcoming comprehensive 3D oil spill model. We model and 

visualize the trajectories an oil spills in severe storms using numerical simulation with high 

performance computing. The modular design of our software, with uses the Cactus framework, 

enables us to easily integrate the oil spill model with coastal storm models to carry out numerical 

simulations of oil spills in different weather conditions. 

COMPUTATIONAL INFRASTRUCTURE 

 

    

Figure 1: The left diagram shows the internal structure of a typical Cactus thorn. A high level 
view of a typical Cactus application is shown on the right diagram, where the Cactus 
Specification Tool (CST) is to provide bindings for the flesh and all Cactus thorns. The Cactus 
Computational Toolkit (CCTK) provides a range of computational capabilities, such as parallel 
I/O, data distribution, or checkpointing via the Cactus flesh API. 
 

With the ever increasing complexity in both hardware and software, the development and 

maintenance of large scale scientific applications has become an intimidating task. This task 

becomes even more complex when we need to integrate together different physics models each 

with their own differing characteristics. One solution to enable such application development 

issues is to build and utilize computational frameworks (or cyberinfrastructures). A 

computational framework can free application developers from low-level programming and 

enable effective usage of HPC systems. Programming based on a computational framework can 
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be more productive due to the abstractions and data structures provided by the framework that 

are suitable for a particular domain. A successful computational framework often leads to a more 

collaborative and productive work environment, which is crucial for multidisciplinary research. 

In this section we will describe the Cactus - Carpet computational framework upon which this 

work is built. 

CACTUS COMPUTATIONAL FRAMEWORK 

The Cactus Framework (Goodale et al., 2003) was developed to enhance programming 

productivity and enable large-scale science collaborations. The modular and portable design of 

Cactus enables scientists and engineers to develop independent modules in Cactus without 

worrying about portability issues on different computing systems. The common infrastructure 

provided by Cactus also enables the development of scientific codes that reach across different 

disciplines. This approach emphasizes code reusability, leads naturally to well designed 

interfaces, and to well tested and supported software. As the name Cactus indicates: the Cactus 

framework contains a central part called the flesh, which provides an infrastructure and interfaces 

to multiple components or thorns in Cactus terminology. Built upon the flesh, thorns can provide 

capabilities for parallelization, mesh refinement, I/O, check-pointing, web servers, coastal 

modeling, oil spill simulation, etc. The Cactus Computational Toolkit (CCTK) is a collection of 

thorns that provide basic computational capabilities. The application thorns can make use of the 

CCTK via calling Cactus flesh API (see Figure 1). In Cactus, the simulation domain is 

discretized using high order finite differences on block-structured grids. The Carpet library of 

Cactus enables a basic recursive block-structured AMR algorithm by Berger-Oliger [Berger and 

Oliger, 1984]. The time integration schemes used are explicit Runge-Kutta methods and are 

provided by the Method of Lines time integrator. The Cactus framework hides the detailed 

implementation of Carpet and other utility thorns from application developers and separates 

application development from infrastructure development. 

CARPET ADAPTIVE MESH REFINEMENT LIBRARY 

The Carpet AMR library (Schnetter et al., 2004, Carpet Website,) is a layer in Cactus to 

refine parts of the simulation domain in space and/or time, where each refined region is a 

block-structured regular grid, allowing for efficient internal representations as simple arrays. In 

addition to mesh refinement, Carpet also provides parallelism and load distribution by 
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distributing grid functions onto processors. To enable parallel execution on multiple processors, 

our finite differencing stencils require an overlap of several grid points or ghost zones between 

neighboring processors‟ sub domains. The inter-process communication is done in Carpet by 

calling external MPI libraries. In each process, OpenMP is used to further enhance the scalability 

and performance. 

VISUALIZATION INFRASTRUCTURE 

For three-dimensional visualization we employ the Vish Visualization Shell, a highly 

modular research framework to implement visualization algorithms. Similar to the cactus 

computational framework it provides a micro-kernel with plugins which are loaded at runtime, 

allowing for developers to independently implement specific aspects without interfering each 

other. As a framework it is designed for exploratory scientific visualization rather than providing 

static solutions for a limited set of data. We apply experimental visualization methods that had 

been developed for other application areas to find features and properties in this oil spill 

simulation data set that are not obvious through conventional visualization approaches. As Vish 

allows overriding each aspect of the visualization on a very fine level including 

hardware-oriented GPU programming, we achieve high performance and flexibility. For instance 

as part of this exploration we experimented with using a scalar field along the particle 

trajectories as height, similar to a height field, in order to display particle properties better than 

just colorization. The method of “Doppler speckles”, originally developed to be applied upon 

astrophysical datasets, turns out to be useful finely resolved vector fields where vector arrows are 

of limited use due to increasing visual clutter. Integration of data sets from various sources is 

addressed via converting them into HDF5 using the F5 layout, which allows efficient handling of 

massive datasets through one common interface. 

FRAMEWORK FOR MODELING OIL SPILL TRAJECTORIES 

The design and development of the oil spill simulation framework follow the same 

philosophy behind Cactus. We emphasize portability and modularity while improving 

performance and scalability. We make intensive use of the Cactus computational toolkit for time 

integration, parallelization, interpolation, I/O, checkpointing, timing, etc. 
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Figure 2: The oil spill modules can be separated into two groups. The interface modules define 
fundamental variables that can be shared among different modules. The application modules 
define operations that can be applied to the fundamental variables. Each application module is 
in charge of one or more tasks in the overall work flow and is responsible for its own input data. 
 

The oil spill modules can be categorized into two groups: interface modules and application 

modules. The interface modules define fundamental variables that can be shared among different 

application modules while the application modules define operations that can be applied to the 

fundamental variables. While the application modules or mathematical operations can be greatly 

different depending on models used, the interface or the primary unknowns shall stay the same. 

As shown in Figure 2, we currently define only two interface modules in our framework. 

Depending on the physical and chemical processes considered, other modules can be added. For 

simulating the oil spill trajectories on ocean surface, all variables are defined in 2D. 

The CoastalBase module defines the depth-averaged ocean current velocity and wind 

velocity 10 meters above ocean surface as fields that depend on the spatial grid at each time step. 

The variables are initialized by the application module CoastalInit, either from detections 
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directly or from data generated in coastal and circulation simulations. In our current setup, we 

read the mesh file and simulation data from ADCIRC (Luettich and Westerink, 2004; Westerink 

et al., 2008) and interpolate the data using the inverse distance weighted method from triangular 

unstructured mesh used in ADCIRC to Cartesian uniform mesh in Cactus. The ocean current 

velocity and wind velocity can be calculated directly from the fundamental variables defined in 

other integrated modules. For instance, in building a comprehensive full 3D oil spill model, the 

3D velocity field of both ocean current and oil in water column shall be calculated during the 

simulation to estimate the current velocity in order to simulate oil slicks on the surface. 

The OilSpillBase module defines the positions and advection velocity of oil parcels. Different 

from the variables defined in CoastalBase, these variables are parcel wise, i.e., they are not 

treated as Eulerian fields but as properties of each parcel in the Lagrangian point of view. Such a 

combination of different numerical methods enables us to treat oil spill simulations more 

efficiently. The OilSpillInit module initializes the position and velocity of oil parcels from a 

given initial profile or some field observation data, which can be processed externally as a spatial 

distribution of oil. 

The evolution of oil parcels is carried out in the OilSpillEvolve module. It takes the ocean 

current velocity and wind velocity from two interface modules respectively after they are 

updated at each time step by other application modules and update the position of all the oil 

parcels. For time integration, we use the method of lines provided by the MoL module in CCTK. 

The MoL module provides several time integration schemes, e.g., Rouge Kutta, Iterative Crank 

Nicholson. These numerical schemes together with other physical and numerical setups can be 

selected by users in a parameter file. The MoL module provides a mechanism for a certain type 

of multi-physics coupling where the right hand side of the evolution equations, i.e., the particle 

velocity in our particle model, can be separated into multiple independent terms which depend 

on the physical model considered respectively. Each model will just need to update the right 

hand side without even knowing the existence of other models. Application modules developed 

upon MoL will be modular by design. 

HURRICANE SIMULATION 

We improved a parametric analytical wind model for asymmetric hurricanes and merged it 

with the large-scale background wind field provided by the National Center for Environmental 
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Prediction (NCEP). The improved asymmetric hurricane wind model is developed from the 

asymmetric Holland-type vortex model (Mattocks and Forbes, 2008). The model creates a 

two-dimensional surface wind field based on the National Hurricane Center (NHC) forecast (or 

observed) hurricane wind point values, namely the maximum wind, radius of maximum wind, 

the specified (34, 50, and 64-knot) wind intensities and their radii in 4 quadrants. Driven by 

hurricane wind fields, a fully-coupled wave-surge model (SWAN+ADCIRC) of Dietrich et al. 

(2010) is employed to calculate storm surge and depth-integrated currents. The ADCIRC model 

solves the depth-averaged barotropic shallow-water equation in spherical coordinates using a 

finite element solution (Luettich and Westerink, 2004; Westerink et al., 2008). The wave model 

[Booij et al., 1999] solves the wave action balance equation without any a priori restrictions on 

the spectrum for the evolution of the wave field. The coupled model can include the interaction 

of wave and surge in coastal regions. SWAN and ADCIRC use the same unstructured SL15 mesh 

with about 2.4 M nodes and 4.7M elements. The mesh resolution varies from 24km in the 

Atlantic Ocean to about 50m in Louisiana and Mississippi. Seven tidal constituents are 

considered by harmonic constants at the open boundary. The time steps are 1 hr and 1 s for 

SWAN and ADCIRC, respectively. The coupled model runs in parallel on a supercomputer from 

the Louisiana Optical Network Initiative (LONI), Queenbee, which has 668 nodes and each node 

has two 2.33 GHz Quad Core Xeon 64-bit Processors and 8 GB Ram. By using 102 nodes (816 

cores), the running time is about 1 hr for the simulation of one actual day. 

 

Figure 3: A snapshot of storm surge distribution near Louisiana coast at the time of 10:00 UTC, 
09/01/2008, during Hurricane Gustav. The interval of contour line is 0.1m. The black arrows 
denote the wind vectors at the same time. 
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Figure 3 shows a snapshot of storm surge distribution during Hurricane Gustav. At this time 

(10:00 UTC, 09/01/2008), the hurricane center was near the Louisiana coast. The eastern winds 

to the front right of the hurricane caused a surge setup (about 3m) at the Breton Sound and the 

east bank of Mississippi River. The Northern and North-eastern winds to the front left of the 

hurricane blew the water offshore and caused about 1m setdown of storm surge along the 

Louisiana coast (from 92
0
 W to 90.5

0
 W). 

VISUALIZATION 

 

Figure 4: Path-lines of Oil parcels in hurricane Gustav simulated in Cactus and viusualized in 
Vish. The path-lines are colored by arclength of the lines. The particles move in the XY-plane. 
An additional scalar field is illustrated by offsetting the line positions in Z-direction, illustrating 
the curvature of the trajectories. This marks positions of the particles with high changes in 
directions. The ADCIRC model is the source of the elevated water surface which is shown as an 
elevated and color-mapped surface. Also the wind vector-field which is shown using 
vector-speckles[Benger et al., 2009a] on the terrain grid is provided by the ADCIRC data. An 
aligned 50m resolution satellite image shows the Mississippi delta in the foreground. A 500m 
resolution covers the background. The arrow illustrates North direction. 
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Proper visualization of the oil spill trajectories addresses two aspects: visual analysis of the 

simulation data itself and providing a context based on external data. Interfacing external data 

faces challenges of incompatible data models (Nativi et al., 2004) (systematic obstacles) and file 

formats (Benger, 2009) (technical obstacles). Based on previous work visualizing hurricane 

Katrina (Benger et al., 2006) we superimpose the oil spill trajectories on top of satellite imagery 

of the Gulf coast. Visual enhancements of the oil transport is provided by generic techniques to 

visualize vector fields along curves, such as Doppler speckles (Benger et al., 2009a), which 

provides a visual perception of the flow that is superior to arrow icons. The Vish visualization 

shell (Benger et al., 2007) is used as a framework for visualization, which is very suitable for 

computing and displaying path integration lines and evolution fronts within large data sets 

[Benger et al., 2009b, Bohara et al., 2010b]. While for the particular application here the particle 

trajectories are only considered within the ocean surface, thus reducing the problems to two 

dimensions, embedding these data into a three-dimensional environment allows a more realistic 

interactive impression. 

Certain tools for the analysis of pathlines by means of curvature and torsion (Benger and 

Ritter, 2010) are available in this context, providing indicators for the mixing of fluids (Bohara et 

al., 2010a), which are oil and ocean water in this case. 

NUMERICAL SETUP AND SIMULATION RESULTS 

In preparing an oil spill simulation, we took the Hurricane Gustav data from ADCIRC and 

SWAN simulations (see section „Hurricane Simulation‟) using the unstructured SL15 mesh with 

2.4M nodes and 4.7M elements. We then interpolated the depth-averaged current velocity field 

CU


 and wind field WU


 data onto a 100×100 Cartesian uniform grid. The inverse distance 

weighted method is used to carry out the interpolation. We calculated the advection velocity field 

WWCCa UkUkU


 , where Ck  and Wk are the current and wind drift factor and were set to 1.0 

and 0.03 respectively. The initial oil spill profile was created by randomly generating 1,000,000 

oil parcels near the contaminated area. The advection velocity of each oil particle was 

interpolated from the advection velocity field and the position of the oil parcels was then updated 

using the Iterative Crank Nicholson method with a time interval of an hour. Only the advection 

terms were considered in our simulations. We carried out a demonstrative run in parallel with 4 

MPI processes on a workstation with two dual core AMD Opteron processors and 8 GB memory. 
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On the workstation, each time step took about 40 seconds after the weight function for 

interpolation was calculated and stored in memory before the time integration starts. The 

calculation of the weight function alone took about 20 minutes. The simulation results are shown 

in Figure 5. 

 
Figure 5: Visualization of a gulf coast oil spill simulation with Gustav hurricane data at three 
different time steps (down-sampled by a factor of 50). The read points represent oil parcels, and 
the black arrows represent horizontal wind velocity field 10 meters above the ocean surface. 
The length of the arrows is proportional to the wind speed. The background is the storm surge 
distribution. The interval of contour line is 0.1m. 

CONCLUSION 

In this article we have presented our recent work towards building a framework for 

simulating, analyzing and visualizing oil spill trajectories driven by winds and ocean currents 
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using high performance computing. We took the ocean current velocity and wind data as input 

and tracked the trajectories of drifting oil parcels. Based upon the presented framework, we can 

integrate different coastal and oil spill models for tracking oil spill trajectories. The 

Cactus-Carpet computational infrastructure used by this work enables us to carry out oil spill 

simulations in parallel. It also gets us ready to address multiple scale problems in building a 

comprehensive 3D oil spill model with an adaptive mesh refinement library fully integrated. 
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