
AN HPC FRAMEWORK FOR LARGE SCALE SIMULATIONS
AND VISUALIZATIONS OF OIL SPILL TRAJECTORIES

Jian Tao1, Werner Benger1, Kelin Hu2, Edwin Mathews3, Marcel Ritter4, Peter Diener1, Carola
Kaiser5, Haihong Zhao2, Gabrielle Allen13 and Qin Chen12

ABSTRACT
The objective of this work is to build a framework for simulating, analyzing and visualizing

oil spill trajectories driven by winds and currents using high performance computing. We adopt
a particle model for oil and track the trajectories of oil particles using 2D surface current and
wind, which can either be measured directly or estimated with sophisticated coastal storm and
ocean circulation models. Our work is built upon the Cactus computational framework. The
numerical implementation of the particle model as well as the model coupling modules will become
crucial parts of our upcoming full 3D oil spill modeling toolkit. Employing high performance
computing and networking, the simulation time can be greatly reduced. Given timely injection of
the measurement data, our work can be helpful to predict oil trajectories and facilitate oil clean
up, especially after a tropical cyclone.
Keywords: Coastal Hazard; Oil Spill; HPC; Cyberinfrastructure;
INTRODUCTION

Numerical modeling of oil spills is an important tool for tracking the fate and transport of the oil
released into the marine environment. With the aid of real time observations or other sophisticated
coastal storm models, such numerical simulations can provide useful information such as the extent
and magnitude of the spilled oil, the timeline of oil spreading, etc. for quick response in oil spill
events. High performance computing systems enable us to carry out such numerical simulations
in a more timely and accurate manner. To react to oil spill events such as the Deepwater Horizon
catastrophe, being timely in carrying out such numerical simulations is very important. However,
the great amounts of observation and simulation data as well as the theoretical and numerical
complexity involved in modeling oil spills using high performance computing provide a challenge
to the computational science community. Furthermore, numerical modeling for oil spills involves
multiple spatial scales, and associated temporal scales, from as small as oil wells to as large as
the whole Gulf of Mexico. Different spatial scales have to be considered in order to build a
comprehensive 3D oil spill model that can be used to solve realistic problems involved in oil spills.
Under the support from the Louisiana Optical Network Initiative under authority of the Louisiana
Board of Regents, we carry out this demonstration research and development project to lay out
the foundations for an upcoming comprehensive 3D oil spill model. We model and visualize the
trajectories of oil spill in severe storms by numerical simulation with high performance computing.
The modular design of Cactus enables us to integrate the oil spill model with coastal storm models
to carry out numerical simulations of oil spills in different weather conditions.
COMPUTATIONAL INFRASTRUCTURE

1Corresponding author: Center for Computation & Technology, Louisiana State University,
email: jtao@cct.lsu.edu, fax: (225)578-5362

2Civil & Environmental Engineering Department, Louisiana State University
4Unit of Hydraulic Engineering, Department of Infrastructure, University of Innsbruck
5School of the Coast and Environment, Louisiana State University
3Department of Computer Science, Louisiana State University

1



Figure 1: The left diagram shows the internal structure of a typical Cactus thorn. A
high level view of a typical Cactus application is shown on the right diagram, where the
Cactus Specification Tool (CST) is to provide bindings for the flesh and all Cactus thorns.
The Cactus Computational Toolkit (CCTK) provides a range of computational capabilities,
such as parallel I/O, data distribution, or checkpointing via the Cactus flesh API.

With the ever increasing complexity in both the hardware and software, the development
and maintenance of large scale scientific applications become an intimidating task. Such a
task can be easily getting more difficult if one tries to integrate different models with different
characteristics. One solution to resolve such application development issues is to build and
utilize computational frameworks (or cyberinfrastructures). A computational framework can
not only free application developers from lower level programming but also enable effective
usage of HPC systems. Programming based on a computational framework is usually more
productive because of the abstractions and data structures provided in the framework that
are suitable for a particular domain. A successful computational framework often leads to a
more collaborative and productive work environment, which is crucial for multidisciplinary
research. In this section we will describe the Cactus - Carpet computational framework
upon which this work is built.
Cactus Computational Framework

The Cactus Framework [Goodale et al., 2003] was developed to enhance programming
productivity and enable large-scale science collaborations. The modular and portable design
of Cactus enables scientists and engineers to develop independent modules in Cactus without
worrying portability issues on various computing systems. The common infrastructure pro-
vide by Cactus also enables the development of scientific codes across different disciplines.
This approach emphasizes code reusability, and leads naturally to well constructed inter-
faces, and well tested and supported software. As the name Cactus indicates: the Cactus
framework contains a central piece called flesh, which provides an infrastructure and inter-
faces for multiple components or thorns in Cactus terminology. Built upon flesh, thorns can
provide code for parallelization, mesh refinement, I/O, check-pointing, web servers, coastal
modeling, oil spill simulation, etc. The Cactus Computational Toolkit (CCTK) is a collec-
tion of thorns that provide basic computational capabilities. The application thorns can
make use of the CCTK via calling Cactus flesh API (see Figure 1). In Cactus, the sim-
ulation domain is discretized using high order finite differences on block-structured grids.
The Carpet library of Cactus enables a basic recursive block-structured AMR algorithm

2



by Berger-Oliger [Berger and Oliger, 1984]. The time integration schemes used are explicit
Runge-Kutta methods and it is provided by the Method of Lines time integrator. The Cac-
tus framework hides the detailed implementation of Carpet and other utility thorns from
application developers and separates application development from infrastructure develop-
ment.
Carpet Adaptive Mesh Refinement Library

The Carpet AMR library [Schnetter et al., 2004, Carpet Website, ] is a layer in Cactus
to refine parts of the simulation domain in space and/or time, where each refined region is a
block-structured regular grid, allowing for efficient internal representations as simple arrays.
In addition to mesh refinement, Carpet also provides parallelism and load distribution
by distributing grid functions onto processors. To enable parallel execution on multiple
processors, our finite differencing stencils require an overlap of several grid points or ghost
zones between neighboring processors’ sub domains. The inter-process communication is
done in Carpet by calling external MPI libraries. In each process, OpenMP is used to
further enhance the scalability and performance.
FRAMEWORK FOR MODELING OIL SPILL TRAJECTORIES

The design and development of the oil spill simulation framework follow the same philoso-
phy behind Cactus. We emphasize portability and modularity while improving performance
and scalability. We make intensive use of the Cactus computational toolkit for time inte-
gration, parallelization, interpolation, I/O, checkpointing, timing, etc.

The oil spill modules can be categorized into two groups: interface modules and applica-
tion modules. The interface modules define fundamental variables that can be shared among
different application modules while the application modules define operations that can be
applied to the fundamental variables. While the application modules or mathematical op-
erations can be greatly different depending on models used, the interface or the primary
unknows shall stay the same. As shown in Figure 2, we currently define only two interface
modules in our framework. Depending on the physical and chemical processes considered,
other modules can be added. For simulating the oil spill trajectories on ocean surface, all
variables are defined in 2D.

The CoastalBase module defines the depth-averaged ocean current velocity and wind
velocity 10 meters above ocean surface as fields that depend on the spatial grid at each time
step. The variables are initialized by the application module CoastalInit, either from de-
tections directly or from data generated in coastal and circulation simulations. In our current
setup, we read the mesh file and simulation data from ADCIRC [Luettich and Westerink, 2004,
Westerink et al., 2007] and interpolate the data using the inverse distance weighted method
from triangular unstructured mesh used in ADCIRC to Cartesian uniform mesh in Cactus.
The ocean current velocity and wind velocity can be calculated directly from the fundamen-
tal variables defined in other integrated modules. For instance, in building a comprehensive
full 3D oil spill model, the 3D velocity field of both occen current and oil in water column
shall be calculated during the simulation to estimate the current velocity in order to simulate
oil slicks on the surface.

The OilSpillBase module defines the positions and advection velocity of oil parcels.
Different from the variables defined in CoastalBase, these variables are parcel wise, i.e., they
are not treated as Eulerian fields but as properties of each parcel in the Lagrangian point

3



Figure 2: The oil spill modules can be separated into two groups. The interface modules
define fundamental variables that can be shared among different modules. The application
modules define operations that can be applied to the fundamental variables. Each applica-
tion module is in charge of one or more tasks in the overall work flow and is responsible for
its own input data.

of view. Such a combination of different numerical methods enables us to treat oil spill
simulations more efficiently. The OilSpillInit module initializes the position and velocity of
oil parcels from a given initial profile or some field observation data, which can be processed
externally as a spatial distribution of oil.

The evolution of oil parcels is carried out in the OilSpillEvolve module. It takes the
ocean current velocity and wind velocity from two interface modules respectively after they
are updated at each time step by other application modules and update the position of
all the oil parcels. For time integration, we use the method of lines provided by the MoL
module in CCTK. The MoL module provides several time integration schemes, e.g., Rouge
Kutta, Iterative Crank Nicholson. These numerical schemes together with other physical
and numerical setups can be selected by users in a parameter file. The MoL module provies
a mechanism for a certain type of multi-physics coupling where the right hand side of the
evolution equations, i.e., the particle velocity in our particle model, can be separated into
multiple independent terms which depend on the physical model considered respectively.
Each model will just need to update the right hand side without even knowing the existence
of other models. Application modules developed upon MoL will be modular by design.
HURRICANE SIMULATION

4



We improved a parametric analytical wind model for asymmetric hurricanes and merged
it with the large-scale background wind field provided by the National Center for Environ-
mental Prediction (NCEP). The improved asymmetric hurricane wind model is developed
from the asymmetric Holland-type vortex model [Mattocks and Forbes, 2008]. The model
creates a two-dimensional surface wind field based on the National Hurricane Center (NHC)
forecast (or observed) hurricane wind point values, namely the maximum wind, radius of
maximum wind, the specified (34, 50, and 64-knot) wind intensities and their radii in 4 quad-
rants. Driven by hurricane wind fields, a fully-coupled wave-surge model (SWAN+ADCIRC)
of Dietrich et al is employed to calculate storm surge and depth-integrated currents. The AD-
CIRC model solves the depth-averaged barotropic shallow-water equation in spherical coordi-
nates using a finite element solution [Luettich and Westerink, 2004, Westerink et al., 2007].
The wave model [Booij et al., 1999] solves the wave action balance equation without any a
priori restrictions on the spectrum for the evolution of the wave field. The coupled model
can include the interaction of wave and surge in coastal regions. SWAN and ADCIRC use
the same unstructured SL15 mesh with about 2.4 M nodes and 4.7M elements. The mesh
resolution varies from 24km in the Atlantic Ocean to about 50m in Louisiana and Missis-
sippi. Seven tidal constituents are considered by harmonic constants at the open boundary.
The time steps are 1 hr and 1 s for SWAN and ADCIRC, respectively. The coupled model
runs in parallel on a supercomputer from the Louisiana Optical Network Initiative (LONI),
Queenbee, which has 668 nodes and each node has two 2.33 GHz Quad Core Xeon 64-bit
Processors and 8 GB Ram. By using 102 nodes (816 cores), the running time is about 1 hr
for the simulation of one actual day.
VISUALIZATION

Proper visualization of the oil spill trajectories addresses two aspects: visual analysis
of the simulation data itself and providing a context based on external data. Interfacing
external data faces challenges of incompatible data models [Nativi et al., 2004] (systematic
obstacles) and file formats [Benger, 2009] (technical obstacles). Based on previous work
visualizing hurricane Katrina [Benger et al., 2006] we superimpose the oil spill trajectories
on top of satellite imaginary of the Gulf coast. Visual enhancements of the oil transport is
provided by generic techniques to visualize vector fields along curves, such as Doppler speck-
les [Benger et al., 2009a], which allows provides a visual perception of the flow superior to ar-
row icons. As framework for the exploration of the datasets we employ the Vish visualization
shell [Benger et al., 2007], which is very suitable to compute and display path integration
lines and evolution fronts within large data sets [Benger et al., 2009b, Bohara et al., 2010b].
While for the particular application here the particle trajectories are only considered within
the ocean surface, thus reduced to two dimensions, embedding these data into a three-
dimensional environment allows a more realistic interactive impression.

Certain tools for the analysis of pathlines by means of curvature and torsion [Benger and Ritter, 2010]
are available in this context, providing indicators for the mixing of fluids [Bohara et al., 2010a],
which are oil and ocean water in this case.
NUMERICAL SETUP AND SIMULATION RESULTS

In preparing an oil spill simulation, we take the costal data generated from ADCIRC and
SWAN simulation (see section ) using the unstructured SL15 mesh with 2.4 M nodes and

4.7M elements and interpolate the depth-averaged current velocity field ~Uc and wind field

5



Figure 3: Path-lines of Oil parcels in hurricane Gustav. The trajectories are colored by arc
length of the lines using a rainbow color map. The particles move in the XY-plane. An
additional scalar field is illustrated by offsetting the line positions in Z-direction, illustrating
the distance between neighboring points (ds). End positions of the oil parcels are shown as
white points. The ADCIRC model is the source of the triangulated terrain surface and the
wind vector-field which is shown using vector-speckles[Benger et al., 2009a] on the terrain
grid. The speckles are colored using a color map inspired from the Doppler shift. Red
speckles are pointing away and blue speckles are pointing towards the observer.

6



~Uw data to a Cartesian uniform grid with a size of 100× 100. The inverse distance weighted
method is used to carry out the interpolation. We then calculated the advection velocity
field ~Ua = kc

~Uc + kw
~Uw, where kc and kw are current and wind drift factor and are set

to 1.0 and 0.03 respectively. The initial oil spill profile is created by randomly generating
one million parcels near the contaminated area. The advection velocity of each particle
is interpolated from the advection velocity field and the postion of the oil parcels is then
udpated with the Iterative Crank Nicholson method with a time interval of an hour. For
demonstrative purpose, we only consider the advection terms in our simulations.

Figure 4: Visualization of a gulf coast oil spill simulation with Gustav hurricane data at
two different time steps (downsampled by a factor of 1000). The yellow points represent
oil parcels, and the red arrows represent horizontal wind velocity field 10 meters above the
ocean surface. The length of the arrows is proportioinal to the wind speed.

CONCLUSION
In this article we present our latest work on building a framework for simulating, analyz-

ing and visualizing oil spill trajectories driven by winds and currents using high performance
computing. We take the ocean current velocity and wind data as input and track the trajec-
tories of drifting oil parcels. Based upon the presented framework, we can integrate different
coastal and oil spill models for tracking oil spill trajectories. The Cactus-Carpet compu-
tational infrastructure used by this work enables us to carry out simulations in parallel on
HPC facilities. The presented framework can be used for model coupling and building full
3D oil spill simulations as well.
ACKNOWLEDGMENTS

This work, one of the High Performance Computing (HPC) R&D Demonstration Projects for Oil
Spill Disaster Response, is supported by the Louisiana Optical Network Initiative Under Authority

7



of the Louisiana Board of Regents. The development of the computational cyberinfrastructure is
supported by the CyberTools project via NSF awards 701491. This work used the computational
resources Eric, Queenbee, Tezpur at LSU/LONI and the NSF TeraGrid under grant number TG-
OCE100013. Thanks also go to Soon-Heum Ko, Frank Löffler, and Erik Schnetter for useful
discussions.

References

[Benger, 2009] Benger, W. (2009). On safari in the file format djungle - why can’t you
visualize my data? Computing in Science & Engineering, 11(6):98–102. Feature Article
in “Computing Now” http://www.computer.org/portal/web/computingnow/1109/

whatsnew/cise.

[Benger et al., 2007] Benger, W., Ritter, G., and Heinzl, R. (2007). The concepts of vish.
In 4th High-End Visualization Workshop, Obergurgl, Tyrol, Austria, June 18-21, 2007,
page in print. Berlin, Lehmanns Media-LOB.de.

[Benger et al., 2009a] Benger, W., Ritter, G., Su, S., Nikitopoulos, D. E., Walker, E.,
Acharya, S., Roy, S., Harhad, F., and Kapferer, W. (2009a). Doppler speckles - a multi-
purpose vectorfield visualization technique for arbitrary meshes. In CGVR’09 - The 2009
International Conference on Computer Graphics and Virtual Reality.

[Benger and Ritter, 2010] Benger, W. and Ritter, M. (2010). Using Geometric Algebra for
Visualizing Integral Curves. In Hitzer, E. M. and Skala, V., editors, GraVisMa 2010 -
Computer Graphics, Vision and Mathematics for Scientific Computing. Union Agency -
Science Press.

[Benger et al., 2009b] Benger, W., Ritter, M., Acharya, S., Roy, S., and Jijao, F. (2009b).
Fiberbundle-based visualization of a stir tank fluid. In 17th International Conference in
Central Europe on Computer Graphics, Visualization and Computer Vision, pages 117–
124.

[Benger et al., 2006] Benger, W., Venkataraman, S., Long, A., Allen, G., Beck, S. D.,
Brodowicz, M., MacLaren, J., and Seidel, E. (2006). Visualizing Katrina - Merging Com-
puter Simulations with Observations. In Workshop on state-of-the-art in scientific and
parallel computing, Ume̊a, Sweden, June 18-21, 2006, pages 340–350. Lecture Notes in
Computer Science (LNCS), Springer Verlag.

[Berger and Oliger, 1984] Berger, M. J. and Oliger, J. (1984). Adaptive mesh refinement
for hyperbolic partial differential equations. J. Comput. Phys., 53:484–512.

[Bohara et al., 2010a] Bohara, B., Benger, W., Ritter, M., Roy, S., Brener, N., and Acharya,
S. (2010a). Time-curvature and time-torsion of virtual bubbles as fluid mixing indicators.
IADIS Computer Graphics, Visualization, Computer Vision and Image Processing 2010
(CGVCVIP 2010).

8



[Bohara et al., 2010b] Bohara, B., Harhad, F., Benger, W., Brener, N., Iyengar, S., Ritter,
M., Liu, K., Ullmer, B., Shetty, N., Natesan, V., Cruz-Neira, C., Acharya, S., and Roy, S.
(2010b). Evolving time surfaces in a virtual stirred tank. Journal of WSCG, 18(1-3):121–
128.

[Booij et al., 1999] Booij, N., Ris, R. C., and Holthuijsen, L. H. (1999). A third-generation
wave model for coastal regions, part 1, model description and validation. Journal of
Geophysical Research, 104 (C4):7649–7666.

[Carpet Website, ] Carpet Website. Adaptive mesh refinement with Carpet. http://www.

carpetcode.org/.

[Goodale et al., 2003] Goodale, T., Allen, G., Lanfermann, G., Massó, J., Radke, T., Sei-
del, E., and Shalf, J. (2003). The Cactus framework and toolkit: Design and appli-
cations. In High Performance Computing for Computational Science - VECPAR 2002,
5th International Conference, Porto, Portugal, June 26-28, 2002, pages 197–227, Berlin.
Springer.

[Hutanu et al., 2010] Hutanu, A., Schnetter, E., Benger, W., Bentivegna, E., Clary, A., Di-
ener, P., Ge, J., Kooima, R., Korobkin, O., Liu, K., Loffler, F., Paruchuri, R., Tao, J.,
Toole, C., Yates, A., and Allen, G. (2010). Large Scale Problem Solving Using Auto-
matic Code Generation and Distributed Visualization. Scientific International Journal for
Parallel and Distributed Computing, 11 (2):124016.

[Luettich and Westerink, 2004] Luettich, R. A. and Westerink, J. (2004). Formulation and
numerical implementation of the 2d/3d adcirc finite element model version 44.xx.

[Mattocks and Forbes, 2008] Mattocks, C. and Forbes, C. (2008). A real-time, event-
triggered storm surge forecasting system for the state of north carolina. Ocean Modelling,
25:95–119.

[Nativi et al., 2004] Nativi, S., Blumenthal, B., Habermann, T., Hertzmann, D., Raskin, R.,
Caron, J., Domenico, B., Ho, Y., and Weber, J. (2004). Differences among the data models
used by the geographic information systems and atmospheric science communities. In
Proceedings American Meteorological Society - 20th Interactive Image Processing Systems
Conference.

[Schnetter et al., 2004] Schnetter, E., Hawley, S. H., and Hawke, I. (2004). Evolutions in 3D
numerical relativity using fixed mesh refinement. Class. Quantum Grav., 21(6):1465–1488.
gr-qc/0310042.

[Westerink et al., 2007] Westerink, J., Luettich, R., Feyen, J., Atikinson, J., C. Dawson,
H. R., Powell, M., Dunion, J., Kubatko, E., and Pourtaheri, H. (2007). A basin to
channel scale unstructured grid hurricane storm surge model applied to southern louisiana.
Monthly Weather Review, (136):833–864.

9


