THE SIMULATION FACTORY:
HERDING NUMERICAL SIMULATIONS

ERIK SCHNETTER

ABSTRACT. Performing large three-dimensional time-dependent simulations is a
complex numerical task. Managing such simulations, often several at the same
time as they execute on different supercomputers, is comparable to herding cats
— supercomputers differ in their hardware configuration, available software, di-
rectory structure, queueing systems, queuing policies, and many other relevant
properties.

However, these differences are only superficial, and the basic capabilities of
supercomputers are very similar. We describe a set of abstractions of the tasks
which are necessary to set up and successfully finish numerical simulations us-
ing the Cactus framework. These abstractions hide tedious low-level management
tasks, they capture “best practices” of experienced users, and they create a log trail
ensuring repeatable and well-documented scientific results. Using these abstrac-
tions, many types of potentially disastrous user errors are avoided, and different
supercomputers can be used in a uniform manner.

CONTENTS

(L.__Introductionl

2. Concepts|

3. simulation factory overview|
4. Source tree management|
4.1. Multiple source trees|

4.2. Replicating source trees|
4.4. _Remote executionl

4.5. Listing all known machines|
5. Configuration management|
5.1. Option lists|

0.2. _Thorn [ists|

5.3. Script files|

5.4. Building configurations|

b.6. Directory structure)

5.7. Thorn Formalinel

|6. Simulation management|

OO OV OVWONNNNNSOONGIUU G NN

=

Date: 2008-10-12.
Email: mailto:schnetter@cct.Isu.edu, Web: http:/ /www.cct.Isu.edu/~eschnett/.
Center for Computation & Technology, 216 Johnston Hall, Louisiana State University, Baton Rouge,
LA 70803, USA, Web: http:/ /www.cct.Isu.edu/|
Department of Physics & Astronomy, 202 Nicholson Hall, Louisiana State University, Baton Rouge,
LA 70803, USA, Web: http:/ /www.phys.Isu.edu/,
1

mailto:schnetter@cct.lsu.edu
http://www.cct.lsu.edu/~eschnett/
http://www.cct.lsu.edu/
http://www.phys.lsu.edu/

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 2

6.1. Directory layout] 10
6.2. Templates| 11
6.3. Listing all simulations| 11
/. Restart management 13
7.1 mman 13
I7.2.__Graceful terminationl 13
7.3. Cleaning up| 14
7.4. Restarting| 15
7.5. Showing job output] 15
8. _Miscellaneous commands| 15
i 15

11. _TODO 16
[12._Machine and user databases| 16
3 Proliminan 16
Acknowledgements| 17
17

1. INTRODUCTION

Cactus: [2, 1]

Portals. Portals require a workflow abstraction, since using gsub et al. directly
is too low-level.

State that this text is intended for numerical relativists who know Cactus and
the AEL

Motivation: workflow abstraction. middleware. best practices. initially easy to
understand for users (ssh), later better technologies (certificates). seed for many
other existing ideas (e.g. cleanup actions). reduce stress by avoiding mistakes.
simplify things to prevent people from taking shortcuts. standardise things to
make collaboration easier (e.g. common scripts for post-processing).

NR uses change code frequently.

The task of the simulation factory is to manage source trees, build executables
on different machines, to submit simulations, to monitor and restart them, and to
record a log.

2. CONCEPTS

The simulation factory introduces several concepts which are already implicitly
present in previous workflows:

Source Tree: Conventionally, people have multiple copies of the source tree
on different machines. These source trees are individually checked out or
updated from a repository (e.g. CVS), or local changes are manually copied
between machines. On each machine there are typically several copies con-
taining different versions of the code, e.g. one used in production, another
with a new feature being tested. The simulation factory’s notion of a source
tree is machine independent. This separates the concerns of source code
version and the machine used to store them. While using multiple source

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 3

tree versions for code development is necessary, it is necessary to be able
to speak of the same version as stored on different machines.

In the simulation factory workflow, a source tree version is edited on
one machine (presumably locally) and then quickly replicated onto other
machines. This avoids unintentional differences between versions stored
on different machines, and avoids also having to set up other machines
with credentials to obtain the source code from a repository.

Configuration: Source tree versions can be build with various option set-
tings. The option settings depend on the machine on which the resulting
executable should run, and also depend on a user’s choice, e.g. whether
the executable will be used for debugging, for profiling, or for production
runs. A configuration captures the combination of a particular source tree
version and a particular set of build options. (This is the same terminology
as used in Cactus.) A source tree can contain arbitrarily many configura-
tions.

Simulation: An executable from a configuration can be run with different
parameter files. The parameters specify specify physics of a simulation
as well as computational details, e.g. how many output files to produce.
A simulation captures the combination of a (snapshot of a) configuration
and a specific parameter file. As such, it describes a certain simulation
completely and therefore determines uniquely its result. However, it does
not specify how the simulation is to be submitted to a queuing system. A
simulation thus specifies the what, but not the how.

Restart: Contemporary machines have queueing systems which require jobs
to wait before they start, to be restarted multiple times due to run time lim-
itations, and to be restarted after hardware failures. A simulation contains
arbitrarily many restarts, where each restart either begins from scratch or
from checkpoint files left by a previous restart. Each restart is essentially
identical to a PBS job; it is active while it is queued or running, and finished
afterwards. Only one restart can be active per simulation.

Machine database: Since all machines are different, and since each system
administrator seems to enjoy improving the local installation, thereby
making it different from any other machine, it is necessary to store small
“recipes” for certain actions, such as e.g. commands for logging in, copy-
ing files, submitting jobs, etc. These are stored in a machine database, which
is distributed together with the simulation factory. (The machine database
is stored as Perl associative arrays in keyword/value pairs which can be
easily corrected and extended.) A user database extends this setup, allowing
per-user settings to override the “official” settings in the machine database.

Self sufficiency: Each source tree, configuration, simulation, and restart is
independent of all others, and contains copies of all relevant information
(option files, parameter files, executables, etc.) to make it self-sufficient.
That means that e.g. updating a configuration does not affect simulations
that are using this configuration — it only affects new simulations that are
created later. This ensures that source trees, configurations, simulations,
and restarts remain self-consistent and can continue to be used without
being affected by accidental changes to other parts of the setup.

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 4

One major difference between this terminology and the implicit terminology
that an HPC user would use is that there is a strict distinction between a source
tree version and the machine which is used to store it, so that the same source
tree version can be replicated on different machines. The other major difference
is that the notion of a simulation has been introduced, where a simulation defines
already, implicitly, the simulation result, but does not specify the sequence of job
submissions which are required to actually calculate the result.

The machine database provides a unified user interface to machines with dif-
ferent setups. Although many of the differences between machines are only small,
only a completely uniform interface allows automating tasks.

Based on the above concepts, the simulation factory offers commands for the
most common actions, i.e., to replicate a source tree between machines, build a
configuration, or manage simulations in several ways. Using these commands has
several advantages over managing configurations and simulations directly:

e The simulation factory provides a uniform interface to different machines.
(This is an “interface” is in the sense of shell commands, not a graphical
user interface.)

e The simulation factory leaves automatically a log trail of all actions applied
to a simulation, so that past actions can be reviewed in case of problems.

e The simulation factory has a certain amount of error checking built in
which prevents common errors, such as e.g. submitting two jobs writing
into the same output directory.

e The simulation factory enforces certain best practices which were collected
by experienced users, which further reduce the chances of user errors. For
example, each restart uses a different output directory, which avoids po-
tential problems when restarting a simulation after an unclean shutdown.

e The simulation factory implicitly enforces a certain regular structure onto
the output of simulations, which makes it easier to post-process simulation
results automatically or semi-automatically.

e The simulation factory can make use of highly efficient command se-
quences which are either unknown to common users or are too compli-
cated to be used manually, e.g. avoiding copying large files, executing
compute intensive commands in parallel, or removing temporary files au-
tomatically.

The simulation factory is not meant to be a black box. Many details can go
wrong when building executables or submitting jobs to a queue, and these may
still require human intervention. At the same time, while the simulation factory
offers convenient ways to check on the status or result of a simulation, it is still
necessary to examine the simulation and output directories manually to obtain
the full picture. Future versions of the simulation factory may improve this with
user feedback.

It would be possible to provide a high-level graphical user interface built on
the abstraction offered by the simulation factory. While it is not intended to make
direct user contact with the machines unnecessary, many maintenance tasks —
such as listing the current state of submitted or ongoing simulations — could be
simplified even for the expert user.

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 5

3. SIMULATION FACTORY OVERVIEW

The simulation factory is distributed as a directory called simfactory contain-
ing a Perl script called sim. The simfactory directory should be copied into a con-
venient place, preferably within a Cactus source tree. Similar to Cactus, should not
be installed by the system administrator. It is necessary to set up a user database
(contained in the simfactory directory) before using the simulation factory; this
is described in section[12below.

This Perl script can be called with different subcommands, similar to the way
cvs or svn is used. One particular command is

simfactory/sim help

which lists all available commands and options.
All simulation factory commands can be executed on a remote machine without
manually logging in there. The feature is described in section 4.4}

4. SOURCE TREE MANAGEMENT

The simulation factory supports multiple source trees. Each source tree must
be stored as a subdirectory of a certain source base directory. One way to manage
source trees is to edit them only on one machine, e.g. a notebook or a local work-
station, and to replicate the source trees to all other machines after each change.
Replication, which uses rsync, takes typically only a few minutes.

4.1. Multiple source trees. Here is the directory structure of a possible setup of
several source tree versions on a notebook:

/home/eschnett/Calpha
/home/eschnett/Cbeta
/home/eschnett/Cvanilla

There are three source trees, named Calpha, Cbeta, and Cvanilla, respectively,
in the source base directory /home/eschnett. Each of these three source trees is a
full Cactus source tree, in this case renamed from Cactus to something “descrip-
tive”. Source tree names can be arbitrary, but they must be located in the same
source base directory. There can be other files and directories in the source base
directory; one can e.g. use one’s home directory as source base directory if there is
sufficient disk space available.

4.2. Replicating source trees. The simulation factory replicates source trees by in-
voking a customised rsync command. The simulation factory command to repli-
cate a source tree on a different machine is:

cd /home/eschnett/Calpha
simfactory/sim sync peyote

This replicates the source tree Calpha from the local machine to Peyote (a Linux
cluster at the AEI). It assumes that the simulation factory is installed as the direc-
tory simfactory in the Calpha source tree.

The machine database contains the necessary options for invoking a working
rsync command on both the local machine and on Peyote. The locations of the
source base directory on both the local and remote machine are also stored in the
machine database.

The simulation factory performs the following internal steps when executing
this command:

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 6

(1) Determine local machine name

(2) Look up local machine in machine database

(3) Look up remote machine (peyote) in machine database

(4) Compose rsync command from both machine descriptions
(5) Output rsync command to screen as debugging aid

(6) Invoke rsync command

The simulation factory cannot replicate a source tree if the local machine is not
described in the machine database.

It is convenient to store the simulation factory source code in a Cactus source
tree. In this way, replicating the source tree onto a different machine automatically
replicates the simulation factory as well. Replicating a source tree does not require
a simulation factory to be installed on the remote machine. This avoids having
to install the simulation factory on other machines, and guarantees that the user
databases are identical on all machines.

Since the simulation factory accesses remote machines, it needs to be able to log
in there. This is most convenient if ssh has been set up to allow access without
having to type passwords more than once. ssh keys with empty passwords are
dangerous. A safer alternative is a keychain, which is described in section[I3]

Some machines are not accessible from the outside. In this case, the machine
database needs to describe how a “trampoline machine” is used to set up an ssh
chain. (For details see section[12])

4.3. Other information stored in source trees. It is possible to store additional
files in source trees. These files will also be copied to the remote machines, mak-
ing this a convenient way to distribute information. For example, one can store
parameter files or post-processing scripts in the source tree.

The simulation factory knows a set of additional subdirectories in the main Cac-
tus directory which are replicated. These subdirectories include

AEIPhysics
simfactory
bin

carpet
parfiles

4.4. Remote execution. All simulation factory commands can be executed trans-
parently on remote machines, i.e., without explicitly logging into the remote ma-
chine. This is done by using a remote prefix to the simulation factory command,
asin

simfactory/sim remote peyote help

to execute the help subcommand on the remote machine Peyote (which in and
itself is not very useful).

The machine database and the user database describe the ssh command and its
options which are used to log into the remote machine, and the user name which
is used for logging in.

If there are two remote machines located close together, both far from the local
machine, then its makes sense to copy a source tree from one remote machine to
another. This can be faster than copying it from a local machine. For example:

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 7

simfactory/sim sync peyote

simfactory/sim remote peyote sync belladonna
This copies first the local source tree to Peyote, and then from Peyote to Bel-
ladonna. After this, both Belladonna and Peyote contain a copy of the local source
tree.

4.5. Listing all known machines. The simulation factory command
simfactory/sim list-machines

lists all machines in the machine database. command list-machines can be ab-
breviated as 1ist-mach.

5. CONFIGURATION MANAGEMENT

Each source tree can contain several configurations. As described in section
above, a configuration combines a set of thorns and compiler options, defining an
executable. This is exactly same concept as in Cactus; simulation factory’s contri-
bution is to store thorn lists, option lists suitable for particular machines, and to
make the build process more convenient. It also stores script files (e.g. for PBS)
which can be used to run a particular executable on the machine for which it was
built.

5.1. Option lists. Coming up with a good option list for a particular machine re-
quires experience, both with the machine’s operating system and with the Cactus
thorns which may require external libraries. It is customary that a power user
creates such an option list, installing necessary external libraries as necessary, and
that most users then use these option lists in a black box fashion. This goes nicely
with simulation factory’s approach of storing option lists within itself.

Option lists should be located in the simulation factory subdirectory
optionlists. Their name should specify the machine for which it is designed.
Some example option lists are

abe-mvapich2

eric-mvapich2

ranger-mvapich
If there are option lists e.g. for using different MPI implementations on the same
machine, then the option lists’ names should be distinct.

Option lists are templates are templates which can contain variables which are
replaced when a simulation is created (see section below). Three particular
variables are DEBUG, OPTIMISE, and PROFILE which can be set either to yes or no
when creating a configuration.

5.2. Thorn lists. Cactus supports building superfluous thorns into a configura-
tion, allowing to choose at run time which thorns should be activated. This makes
it possible to create standard configurations which can be used with many, very
different parameter files. Since not all machines have all external libraries avail-
able (e.g. PETSc may not be installed), not all thorns can be built on all machines.
That means that, while there is a “standard” set of thorns which are useful for a
particular research direction, each machine can build only a subset of these.
Thorn lists should be located in the simulation factory subdirectory
thornlists. Their name should (but does not have to) consist of at least two parts,
identifying the purpose of the thorn list and the machine for which it is designed.

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 8

Thorn lists should be independent of the fact whether a configuration is a debug
or an optimised build. Some example option lists are

einstein-abe

einstein-eric

einstein-ranger
If there are thorn lists e.g. for using different MPI implementations on the same
machine, then the thorn lists’ names should be distinct, since the set of supported
external libraries and hence the set of thorns which can be built may be different.

5.3. Script files. In order to run an executable on a certain machine, it is usually
necessary to submit it as job to a batch system (e.g. PBS). This requires writing a
script file which will call the executable and perform certain additional tasks, such
as creating a scratch directory or redirecting output to certain files. Even when no
batch system is used, script files are useful since they control how the executable
is run, ensuring they are called correctly and in a consistent manner. Script files
contain commands which are tailored for a certain machine, and can also depend
on the compilers or libraries that were used to build the executable.

Script files should be located in the simulation factory subdirectory
scriptfiles. Their name should (but does not have to) identify the machine for
which it is valid. Script files should be independent of the fact whether a config-
uration is a debug or an optimised build and should be independent of the thorn
list. Some example script files are

abe-mvapich?2

eric-mvapich2

ranger-mvapich
If there are script files e.g. for different MPI implementations on the same machine,
then the script files’ names should be distinct, since different MPI implementations
typically require different commands to run an executable.

5.4. Building configurations. In order to build a configuration, one has to specify
three items: the name of the configuration, and option list, and a thorn list. The
command to build a configuration is

simfactory/sim remote ranger build einstein-ranger-mvapich-debug
\

--optionlist=ranger-mvapich \

--thornlist=einstein-ranger \

--scriptfile=ranger-mvapich \

--debug

This command creates a new configuration einstein-ranger-mvapich-debug
(if it does not already exist), configures it with the option list ranger-mvapich
(which has incidentally a name similar to the configuration), setting the vari-
able DEBUG to yes in the option list, and then builds and executable using the
thorn list einstein-ranger. The executable will later be run using the script file
ranger-mvapich.

The simulation factory remembers the option list, thorn list, and script file that
was used to create configuration. If the configuration needs to be recompiled,
these options can be omitted. If either the option list or the thorn list should be
changed, one or both can be given as options. The simulation factory will then

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 9

check whether they actually changed (comparing them character-wise), and if so,
will re-configure or re-build the configuration.
It is possible to build multiple configurations at the same time, as in

simfactory/sim remote ranger build \
einstein-ranger-mvapich-debug einstein-ranger-mvapich-optimise

If additional options are given in this case, they apply to all configurations.

5.5. Other commands. The simulation factory command
simfactory/sim remote ranger list-configurations

lists all configurations which exist for a particular source tree, together with
the date at which the executable was last recompiled. The long command
list-configuration can be abbreviated as list-conf. The output could look
like this:

Configurations:
einstein-ranger-mvapich-debug [built 2007-08-05 23:56:13]
einstein-ranger-mvapich-optimise [built 2007-08-05 23:55:26]
einstein-ranger-mvapich-profile [built 2007-05-17 1:16:51]

5.6. Directory structure. A configuration is located in the directory
source base directory/source tree name/cont igs/configuration name

which is the standard location for Cactus configurations.
It contains, among many others, the following files:

OptionList
ScriptFile
ThornList

These are verbatim copies of the files given in the corresponding options when
building a configuration. The file ThornList is already placed there by Cactus, the
files OptionList and ScriptFile are added by the simulation factory.

5.7. Thorn Formaline. The Cactus thorn AEIThorns/ Formalin should be
present in the thorn list. If it is part of a configuration, Cactus will take a snap-
shot of the source tree and the configuration options, and will include it into the
executable. At run time, a parameter can be set to recreate the source tree which
was used for a particular executable, making it impossible to lose the source code
for an executable.

Formaline will also create a unique build ID each time the code is recompiled.
This can be used to identify a configuration and source code version, which is
useful to cross-reference simulation results which may have been produced by
different source code versions.

Together with Formaline, the simulation factory will also generate unique sim-
ulation IDs and restart IDs to identify what restart of what simulation produced a
particular result. This is discussed in section [1T|below.

LEormaline” is an unfortunate misspelling of the chemical “Formalin” which is used to preserve
biological species.

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 10

6. SIMULATION MANAGEMENT

A simulation is essentially a combination of an executable and a parameter file.
Together they specify the result of the simulation, but they do not specify which
queue and how many processors to use. After a simulation has been created, it
can be submitted to a queue, restarted from a checkpoint after it aborts or finishes,
removed from a queue, etc. This is described in sectionbelow.

In order to create a simulation, one has to specify three items: the name of the
simulation, the name of the configuration which supplies the executable, and a
parameter file. The command to create a simulation is

simfactory/sim remote ranger create qcO-reference-0000 \
--configuration=einstein-ranger-mvapich-optimise \
—--parfile=parfiles/einstein/qcO-reference.par

The name of a simulation can be chosen arbitrarily. It is a good practice to
name a simulation after the parameter file which is used. Since one often wants
to compare similar parameter files or source code versions, it can be convenient to
append a version number or similar modifier to the simulation name, as was done
with the suffix 0000 in the example above.

The configuration must have been previously built, and an executable must
have been created. The parameter file must exist on the remote machine, and its
file name is interpreted relative to the directory containing the source tree (i.e.,
the main Cactus directory). In the example above, a subdirectory parfiles was
created in the main Cactus directory which contains a set of parameter files. This
means that this parameter file directory is automatically replicated on remote ma-
chine whenever the source tree is replicated.

After a simulation has been created, neither the executable nor the parameter
file can be changed. (It is possible to change them manually by either editing or
exchanging the corresponding files in the simulation directory.)

As described in section [2|above, a simulation is not automatically submitted to
a queueing system. A separate submit command is required for that, as described
in section [ZIbelow.

6.1. Directory layout. All simulations are stored as subdirectories of a base direc-
tory (which is different from the source base directory). While the source base direc-
tory is typically located on a home partition or a similar location which contains
more valuable data, the base directory is often on a data disk, or scratch partition
where hopefully files are not automatically deleted.

A simulation is located in the directory

base directory/simulation name
and has the following directory structure:

exe/

par/

run/

SIMULATION_ID

LOG

output-NNNN [-active]/

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 11

The directories exe, par, and run will contain copies of the executable, the pa-
rameter file, and the script file, respectively. Making copies ensures that the simu-
lation is self-contained: any changes to the configuration or the original parameter
file will not accidentally influence the simulation result.

The simulation factory uses a caching mechanism for the executables since mak-
ing a copy of the executable can be expensive, especially if many simulations are
created at the same time. The cache, which is not supposed to be modified man-
ually, contains a copy of the executable. The executable in the exe directory is a
hard link to the cache, which uses almost no disk space. The cache is updated
automatically if necessary, in a way which does not influence existing simulations.

The parameter file and the script file are templates which can contain variables
which are replaced when a simulation is started (see sectionbelow).

A simulation can contain several restart directories. Active restarts have the suf-
fix —active. At most one restart per simulation can be active (see section[ﬂbelow).

6.2. Templates. Option lists, parameter files, and script files are templates, that is,
they can contain variables which are automatically replaced when a simulation is
created or a job is submitted or restarted. Variables need to be written like this:

QVARIABLEQ

to make it immediately clear whether something is a variable or not. Table [1|lists
all variables which are defined automatically.

Arbitrary additional variables can be defined with the --define option using
the syntax

simfactory/sim remote ranger create qcO-reference-0000 \
--configuration=einstein-ranger-mvapich-optimise \
--parfile=parfiles/einstein/qcO-reference.par \
--define USER_VARIABLE=SomeValue

Variables need not be all upper case.

6.3. Listing all simulations. The simulation factory command
simfactory/sim remote peyote list-simulations

lists all simulations which exist on a particular machine. The long command
list-simulations can be abbreviated as 1ist-sim.
The output could look like this:

Simulations:
qcO-reference-0000 [ACTIVE, restart id "0000", job id "296"]
qcO-reference-0016 [INACTIVE, was never active]
qcO-reference-0017 [INACTIVE, was never active]
qcO-reference-0018 [INACTIVE, was never active]

sep_07.00_59a-1ev5-h2.00-0001 [INACTIVE, restart id "0009"]
sep_07.00_59a-1ev5-h2.56-0001 [INACTIVE, restart id "0004"]
sep_07.00_59a-1lev5-h2.84-0001 [INACTIVE, restart id "0005"]
When the option --verbose is used, each simulation is examined in more detail,
leading to output like

Simulations:

qcO-reference-0000: ACTIVE (queued or running)
active restart id: "0000"

THE SIMULATION FACTORY:

HERDING NUMERICAL SIMULATIONS

Variable Type Example
DEBUG string no
OPTIMISE string no
PROFILE string no
SIMULATION_NAME string rnsid
SHORT_SIMULATION_NAME string rnsid-0002

SIMULATION_ID Shﬁng
RESTART_ID string
HOSTNAME string
RUNDIR string
SCRIPTFILE Shﬂng
EXECUTABLE Shﬁng
PARFILE string
USER string
NODES int
PPN int
PROCS int
QUEUE string
WALLTIME string
WALLTIME_HH int
WALLTIME_MM int
WALLTIME_SS int
WALLTIME_SECONDS int
WALLTIME_MINUTES int
WALLTIME_HOURS real
EXECHOST string

(suitable as job name in PBS scripts)

simulation-rnsid-redshift-eschnett-
2007.03.12-23.16.56-6359

0002

numrel02.cct.Isu.edu

/home/eschnett/runs/
rnsid /output-0002-active

rnsid.qsub

./cactus_rnsid

rnsid.par

eschnett

4

2

8

workq

4:00:00

4

0

0

14400

240

4.0

1c0042

TABLE 1. Automatically defined variables. Additional variables
can be defined with the option --define. Variables are replaced
in option lists, script files, and parameter files.

job id: "296"
job state: running
processors: 32
wall time limit: 48:00:00
disk usage: 0.1 GByte
configuration: einstein-peyote-mpich-optimise
scriptfile: ScriptFile
parfile: qcO-reference.par
Simulations: 1
active: 1 (0 queued, 1 running, O pending)
inactive: 0O

Total disk usage: 0.1 GByte

12

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 13

7. RESTART MANAGEMENT

As described in section [2] above, the simulation factory makes a distinction be-
tween simulations and restarts. A simulation describes the source code and pa-
rameter file which is used to produce a particular result. A simulation is typically
submitted to a queueing system multiple times, using checkpointing and recovery.
Each such submission is called a restart. A simulation can contain many restarts,
and after being created it starts out with zero restarts.

A new restart is said to be active while it is being processed by the queueing
system. Old restarts are called inactive. A simulation is also either active or inactive,
depending on whether it contains an active restart. These distinctions are made to
determine what kinds of commands are allowed at a given time. For example, an
active simulation cannot be submitted to a queueing system.

A restart undergoes the following states after being created:

active/queued
active/running
active/running [stopped]
active/finished
inactive

It starts out being queued, which means that it has been submitted to a queueing
system but is not yet running. (Note that it is nevertheless already called active.)
After running, or after being stopped, it ends up being finished (but still active).
The restart needs to be explicitly cleaned up in order to become inactive. This life
cycle of a restart is also described in figure|[T]

7.1. Commands. A simulation can either be submitted, i.e., started from scratch,
or restarted, i.e., started from an existing checkpoint file which was written by an
earlier restart. Both commands take the same arguments. When restarting, it is
also possible to specify what checkpoint file to use:

simfactory/sim remote ranger submit gcO-reference-0000 \
—--procs=64 --walltime=24:00:00

simfactory/sim restart ranger submit qcO-reference-0000 \
--procs=64 --walltime=24:00:00

The number of processors must be specified. The wall time is optional; if not
specified, it is assumed to be the maximum possible wall time for the machine.

An additional option --from-restart-id=2 can be used to specify that a simu-
lation should be restarted from a particular checkpoint instead of the latest one.

7.2. Graceful termination. When a running simulation is stopped by killing one
of its processes or using PBS” qdel command, then the simulation aborts imme-
diately. This can leave output files in inconsistent states, and it loses all progress
made since the last checkpoint.

There are two mechanisms in Cactus which allow a graceful termination. The
web server interface (thorn CactusConnect/HTTPD or thorn AstroGrid/HTTPS) can
be used to terminate a simulation after the current iteration, guaranteeing that all
output files are left in a consistent state. In addition, a termination checkpoint
can be requested. This delays termination by a few minutes, but saves all current
progress.

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 14

restart is created

) restart is deleted
[active/queued)
job starts
Y .
restart is deleted
[active/running '7
job finishes
Y
[active/running [deleted]]
job finishes
Y
[active/finished]:
restart is cleaned up
Y

[inactive]

FIGURE 1. Life cycle of a restart, listing the possible restart states
and their transitions. A new restart starts out as active/queued,
and ends up as inactive after it has been cleaned up. The bold
state transitions (create, stop, cleanup) have to be initiated by ex-
plicit user commands.

In a similar manner, the thorns CCCCThorns/TriggerTerminationManual or
AEIThorns/ManualTermination can be used to request termination when a cer-
tain code is written to a certain file. The simulation factory knows about these
thorns. If one of these thorns is active and has created an empty termination file,
the simulation factory will terminate the simulation by writing the corresponding
code into that file.

7.3. Cleaning up. After ajob is finished, it needs to be cleaned up before the simu-
lation can be resubmitted again. Ideally this cleanup should happen automatically,
but this is not yet implemented, and thus has to be triggered explicitly. Typical
cleanup actions are

e Remove half-written (useless) checkpoint files

e Remove temporary files

o Correct file permissions

Other actions are possible, e.g. contacting an external information service and
transmitting some simulation details, or starting some automatic analysis tools.

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 15

7.4. Restarting. Each restart has its own output directory. This guarantees that
different restarts cannot inadvertently overwrite earlier results. It also makes it
possible to delete or ignore data from a bad restart.

In order to simplify parameter files, the checkpoint files from which a job
restarts are made available in the job’s output directory. In order to save disk
space, the checkpoint files are not copied but are only hardlinked. This makes it
possible to delete or archive restarts while keeping the checkpoint files which were
used to start other jobs.

7.5. Showing job output. The command

simfactory/sim restart ranger show-output qcO-reference-0000

shows Formaline output, standard output, and standard error of the current
restart of a simulation. If the restart is currently running, the output is accessed
wherever the queuing system places it, if necessary.

8. MISCELLANEOUS COMMANDS

comment

9. USER SETUP

whatever is necessary before using the simulation factory

10. TUTORIAL
B [Guide user through a sample session for the Cactus WaveToy|
Checking out Cactus source tree and simulation factory:

(1) Check out Cactus tree, as described in Cactus documentation
(2) Check out simulation factory into the Cactus source tree
(3) Create simulation directory: mkdir $HOME/simulations

Using the simulation factory:
simfactory/sim help

simfactory/sim build wavetoy-debug \
--optionlist=ranger-mvapich --thornlist=wavetoy
--scriptfile=ranger-mvapich --debug

simfactory/sim list-configurations

simfactory/sim create wavetoyc_rad \
--configuration=wavetoy-debug \
--parfile=arrangements/CactusWave/WaveToyC/par/wavetoyc_rad.par

simfactory/sim submit wavetoyc_rad --procs=4

simfactory/sim list-simulations

simfactory/sim cleanup wavetoyc._rad
Looking at results:
(1) cd $HOME/simulations/wavetoyc_rad

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 16

11. TODO

create, submit. Physics vs. job-sitting.
active, inactive. Independent of queued and running.
finished. Deleting is asynchronous. Cleanup.
simulation, job. restart.
directories for simulations. subdirectories for restarts.
hard links for checkpoint files.
subdirectories exe, par, run.
small files with human-readable information, both for simulations and restarts.
ManualTermination. TERMINATE.
copy executables. cache.
copy executables, parameter files, script files. keep everything around.
parameter files and script files are templates.
option and thorn lists, script and parameter files can be stored in simulation
factory or outside.
simulation id, restart id, job id. point to formaline.
machine:
configuration:
simulation:
restart:
job:

12. MACHINE AND USER DATABASES
13. PRELIMINARIES

ssh access: public, private key. password on private key. keychain. ssh agent.

remote login. nothing on stdout for “ssh command”. set up full path for remote
execution. maybe source profile from bashrc, with guard.

profile:

export BASH_PROFILE_READ=1
bashrc:

if test -z "$BASH_PROFILE_READ"; then
source /etc/profile
source .bash_profile
fi
local .ssh/config:
ControlMaster auto
ControlPath ~/.ssh/master-%r@%h:%p

doesn’t work.
agent forwarding;:

ForwardAgent yes

do this on local machine and on trampolines. this option seems to be dangerous,
at least if you do not trust root on the corresponding machine.

closing the control master closes all piggyback connections as well! make sure
you don'’t use a simfactory connection as control master.

list various ssh/rsync errors and their causes and remedies.

mention rate limiters for ssh.

THE SIMULATION FACTORY: HERDING NUMERICAL SIMULATIONS 17

install simfactory in a Cactus directory. rsync will then copy it over. if outside a
Cactus directory, the remote path will be wrong. (this could be corrected.)

local hostname. need mdb entry for laptop. $HOME/ . hostname.

udb to overwrite mdb entries, especially user names.

ACKNOWLEDGEMENTS

Portal project for vision. AEI for hospitality.

REFERENCES

[1] Cactus Computational Toolkit home page, URL http://www.cactuscode.org/|

[2] T. Goodale, G. Allen, G. Lanfermann, J. Masso, T. Radke, E. Seidel, and J. Shalf, The Cactus framework
and toolkit: Design and applications, Vector and Parallel Processing — VECPAR’2002, 5th International
Conference, Lecture Notes in Computer Science (Berlin), Springer, 2003.

http://www.cactuscode.org/

	1. Introduction
	2. Concepts
	3. simulation factory overview
	4. Source tree management
	4.1. Multiple source trees
	4.2. Replicating source trees
	4.3. Other information stored in source trees
	4.4. Remote execution
	4.5. Listing all known machines

	5. Configuration management
	5.1. Option lists
	5.2. Thorn lists
	5.3. Script files
	5.4. Building configurations
	5.5. Other commands
	5.6. Directory structure
	5.7. Thorn Formaline

	6. Simulation management
	6.1. Directory layout
	6.2. Templates
	6.3. Listing all simulations

	7. Restart management
	7.1. Commands
	7.2. Graceful termination
	7.3. Cleaning up
	7.4. Restarting
	7.5. Showing job output

	8. Miscellaneous commands
	9. User setup
	10. Tutorial
	11. TODO
	12. Machine and user databases
	13. Preliminaries
	Acknowledgements
	References

