Module E:
Distributed Scientific Computing

Introduction to M-W Pattern,
MapReduce and Cloud Computing

Dr Shantenu Jha
http://radical.rutgers.edu

Overview of Module E
Distributed Scientific Computing

* Introduction to M-W and Cloud Computing
— Master-Worker Pattern

— Examples of M-W Pattern:
* M-W Example Using SAGA: Mandelbrot Set
* Ensemble simulations, Replica-Exchange
* Introduction to MapReduce
 Wordcount using SAGA MapReduce

* |Introduction to Cloud Computing
 Why Cloud Computing?

— Convergence of multiple trends: Data-centric, Data-Center...

e Understanding Amazon EC2 — default ‘standard’

Master-Worker Pattern

e Pattern: A commonly occurring mode of computation

— Multiple patterns exist
* e.g., publish-subscribe, broker etc.,
* But M-W arguably one of the most pervasive

e M-W: Used in parallel and distributed computing

— Simply put: Master assigns task to a worker; worker does work;
gets more from Master

e Master coordinates task distribution

— M-W not an application in of itself, but a programming model or
“communication pattern” upon which applications can be built

 What types of tasks are suitable for M-W?
— Many independent “units” of loosely coupled tasks
— Concurrent execution is feasible/permissible

Master-Worker Pattern

 What types of tasks are not suitable for M-W?
— Decomposing into smaller independent units is not
trivial
— Lots of communication:

e Either between Master and a Worker (s)
— Master becomes the bottleneck!

 Or between workers?

* Of Applications in E1, which are/can be M-W?
— Nektar? Montage? SCOOP? Climateprediction.net?
— Ensemble simulations and/or Replica-Exchange

Some Challenges in Distributed M-W
Execution

Task Decomposition and coordination:
— How do we assign work units to workers?
— What if we have more work units than workers?
Execution and Fault-Tolerance:
— How do we know all the workers have finished?
— What if workers die?
Coordination:
— What if workers need to share partial results?
— How do we aggregate partial results?

Q: Based upon the above, what other constraints on
suitability for M-W?

MANDELBROT SET

M-W to Compute Mandelbrot Set

How is M-W used to compute Mandelbrot Set?
* Task item: Complex plane broken-up;
compute parts of it
* Master puts task items into bucket.
Worker collects tasks;

CSC 7700: Scientific Computing 7

SAGA-Based M-W: Mandelbrot

— You've seen Mandelbrot using SAGA-Python and
Biglob

— Q: Discuss the similarities and the differences?
Are they both implemented as a M-W pattern?

SAGA-Based M-W: Mandelbrot

1. Everything local: For 1 Master and same workload vary: N, = 2, 4 and
8 Plot times to completion.

2. Distribute (equally?) the workers across a couple of XSEDE machines.
Compare with (i) and (2)

ENSEMBLE-BASED
REPLICA-EXCHANGE

Ensemble-based & Replica-Exchange Simulations

Ensemble-based:

— Many uncoupled simulations

— But not necessarily uncoupled in analysis!
Replica-Exchange (RE) methods:

— Represent a class of algorithms that
involve a large number of loosely coupled
ensembles.

RE simulations are used to understand a
range of physical phenomena

— Protein folding, unfolding etc

— MC simulations

Many successful implementations

— Eg folding@home [replica based]

”‘p;;;e_) ¥
AR R,
de R NP A -~ R
B SR
\\\ A //’ A N ‘)3
13 2
o N

"y 300K

Exchange attempts

Distributed Adaptive Replica Exchange (DARE)

300

* Ability to L
dynamically add HPC S
resources. On TG:
— Each Pilot-Job 64px Fm:
o EaCh NAMD 16pX ° Abe Abe/Ranger Abe/QB/Ranger
y Time-tO-COmp|Ethn 'Timepe'rGenerétion—-'—
. < 35 Number Active Glide—Ins ----»-- 1
Improves E 8
= 17
— No loss of efficiency E ¢
g {3
£ 12
= 11
0

50 100 150 200 250
Time (in min)

O —
o

Number of Active Glide—Ins

Understanding Replica-Exchange

* Why Distributed?
— Many un-coupled units (ensembles/replica)
— More resources, the merrier!!

 How Distributed?
— Many implementations exist (eg folding@home)

— SAGA-based “Pilot-Jobs” to use many distributed TG
resources

e Limitations and Success?
— Getting SAGA working on all machines!
— Finding the best set of resources
— Coordinating work across all the resources

MAP-REDUCE

User

Program
(€)) for%(‘ N " foztk . “€1) fork
_ @
N . assign
; . as’sign reduce .)
et map
split 0 — .

y " (© write | qutput
split 1 (5) remote read worker file 0
split 2 | (3)read . (4) local write
split 3 - i output

file 1
split 4
worker)
Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Source: Dean and Ghemawat (OSDI 2004)

“Hello World”: Word Count

Map(String input_key, String input_value):
// input_key: document name
// input_value: document contents
for each word w in input_values:
Emitintermediate(w, "1");

Reduce(String key, lterator intermediate_values):
// key: a word, same for input and output
// intermediate_values: a list of counts
int result = 0;
for each v in intermediate_values:
result += Parselnt(v);
Emit(AsString(result));

Word Count via MapReduce

Data Store
Initial kv pairs Initial kv pairs Initial kv pairs Initial kv pairs
map map map map
k,, values... k,, values... k,, values... k,, values...
ks, values... kj, values... kj, values... ky, values...
k,, values... k,, values... k,, values... k,, values...

! ! ! !

Barrier: aggregate values by keys

l k,, values... l k,, values... l ks, values...

reduce reduce reduce

! ! !

final k; values final k, values final k; values

Some Challenges in Distributed M-W
Execution (Redux)

Task Decomposition and coordination:
— How do we assign work units to workers?
— What if we have more work units than workers?
Execution and Fault-Tolerance:
— How do we know all the workers have finished?
— What if workers die?
What if workers need to share partial results?
How do we aggregate partial results?

MapReduce versus Google
MapReduce (Runtime)

MapReduce the pattern versus MapReduce the runtime
Handles scheduling

— Assigns workers to map and reduce tasks

Handles “data distribution”

— Moves the process to the data

Handles synchronization

— Gathers, sorts, and shuffles intermediate data
Handles faults

— Detects worker failures and restarts

Everything happens on top of a distributed FS (later)

WORDCOUNT USING SAGA
MAPREDUCE

SAGA MAPREDUCE

Not tied to any specific infrastructure
— Interoperable across different back-ends
— No optimization, thus performance barrier

Can control chunk-size, task size granularity,
decomposition and placement/distribution

Master-Worker pattern
— Uses Advert Service to coordinate and distribute

Contrast with Google MapReduce or Hadoop
— Google/Yahoo extensively use the File-System
— SAGA’s flexibility comes at a performance!

SAGA PMR

SAGA-based (Pilot) MapReduce:

— https://github.com/saga-project/PilotMapReduce

CSC 7700: Scientific Computing

22

SAGA PMR: WORDCOUNT

e Word Count:

— https://github.com/saga-project/PilotMapReduce/tree/master/applications/
wordcount

* Generate your own input file for the wordcount example
1. Everything local: For 1 Master and same workload vary: N, = 2, 4 and
8 Plot times to completion.
2. Distribute (equally?) the workers across a couple of XSEDE machines.
Compare with (i) and (2)
3. Describe the role of the Pilot-Job?

o i 7, 19

What is cloud computing?

* | don’t understand what we would do
differently in the light of Cloud Computing
other than change the wordings of some of
our ads

Larry Ellision, Oracle’s CEO

* | have not heard two people say the same
thing about it [cloud]. There are multiple
definitions out there of “the cloud”

Andy Isherwood, HP’s Vice President of European Software Sales
* |t's stupidity. It’s worse than stupidity: it’s a
marketing hype campaign.

Richard Stallman, Free Software Foundation founder

What is a Cloud?
From NIST

Resource pooling. Computing resources
are pooled to serve multiple consumers.

Broad network access. Capabilities are
available over the network.

Measured Service. Resource usage is
monitored and reported for transparency.

Rapid elasticity. Capabilities can be
rapidly scaled out and in (pay-as-you-go)

On-demand self-service. Consumers can
provision capabilities automatically.

Why is This not Good Ol
Supercomputing

* A Supercomputer is designhed to scale a single
application for a single user.
— Optimized for peak performance of hardware.
— Batch operation is not “on-demand”.

— Reliability is secondary
 If MPI fails, app crashes. Build checkpointing into app.

— Most data center apps run continuously (as services)

* Yet, “in many ways, supercomputers and data

centers are like twins separated at birth.”* . - —

* Dan Reed

Cloud Computing Interest
(adapted from Kathy Yelick)

User interfaces/Science Gateways: Use of clouds | ‘
to host science gateways and/or access to cloud i i '

Hadoop File System

MapReduce Programming Model/Hadoop

Cost associativity? (i.e., | can get 10 cpus for 1 hr

ability to schedule independently of other groups/

Exclusive access to the computing resources/ t 1

Ability to share setup of software or experiments
with collaborators

Ability to control software environments specific

to my application

resources closer to deadlines

Access to additional resources

| | | | | | |
I ! I I I I I I I

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Cloud Models

Infrastructure as a Service

— Provide a way to host virtual machines on demand
* Amazon ec2 and S3 — you configure your VM, load and go

Platform as a Service

— You write an App to cloud APIs and release it. The platform manages and
scales it for you.
— Google App engine:
* Write a python program to access Big Table. Upload it and run it in a python
cloud.

* Hadoop and Dryad are application frameworks for data parallel analysis

Software as a Service

— Delivery of software to the desktop from the cloud
» Stand-alone applications (Word, Excel, etc)
* Cloud hosted capability
— doc lives in the cloud
— Collaborative document creation

* For more details on *aa$S see paper by Lamia
Youssef and Rich Wolski (GCE'09 @ SCO09)

Cloud Computing: Enabling Technologies
(adapted from Kathy Yelick)

« Centralization to lower costs
— Cheaper power due to bulk rates
— Cheaper hardware purchase
— Personnel savings from scale
 Virtualization
— Allows sharing of resources
— Allows tailoring software
- Simple programming/usage models
— Preinstalled software services
— Map-reduce

.. Its all about the Buisiness Model
(adapted from Kathy Yelick)

Cloud computing is a business model

It can be used on HPC systems as well
as traditional clouds (ethernet clusters)

Can get on-demand elasticity through:
— Idle hardware (at ownership cost)
— Sharing cores/nodes (at performance cost)

How high a premium will you pay for it?
How predictable is your workload?
— Are data-intensive loads more predictablgz

Top challenges to running own cluster
(adapted from Kathy Yelick)

Facility issues power, cooling
System management capability

Complexity of parallel algorithms _

Application availability/maturity

Complexity of purchase and deployment

Interconnect latenc
Supported data storage mechanisms -
Interconnect bandwidth -
I/O performance .
3rd-party software costs .
Interconnect complexity .
Facility issues noise .

0% 5% 10% 15% 20% 25% 30% 35%

The Data Center Landscape

Range in size from “edge”
facilities to megascale.

Economies of scale

Approximate costs for a small size
center (1K servers) and a larger,
50K server center.

Technology Cost in small- Cost in Large
sized Data Data Center
Center

Network S95 per Mbps/ $13 per Mbps/ 7.1
month month

Storage $2.20 per GB/ $0.40 per GB/ 5.7
month month

Administration ~ ~140 servers/ >1000 Servers/ 7.1

Administrator Administrator

Conquering complexity.

Building racks of servers and complex
cooling systems all separately is not
efficient.

Package and deploy into bigger units:

ICE Cube”

Rackable

Key Technology: Virtualization

Traditional Stack Virtualized Stack

Amazon AWS

http://aws.amazon.com

Story goes: Build capacity for X-mas. What do with
spare capacity year around?

“Utility Computing”

— Around long before Amazon EC2

— $0.10 per CPU-hour, plus bandwidth cost

*aaS Model:
— * =|nfrastructure, Software, almost anything

AWS: A set of APIs which give users access to
Amazon technology and content

— laa$, but also “people as a service” — Mechanical Turk

Amazon Simple Storage Service (S3)

Data Storage in Amazon Data Center
Web Service interface

No set-up fee, No monthly minimum
Storage: S0.15 per GB/Month

Data Transfer: $S0.20/GB to transfer data
Private and public storage

Each object up to 5GB in size

Amazon Elastic Compute Cloud

A Web service that provides resizable compute
capacity in the cloud. Designed to make Web-
scale computing easier

A simple Web service interface that provides
complete control of your computing resources

Quickly scales capacity, both up and down, as
your computing requirements change

Changes the economics of computing:

— Pay only for capacity that used; no cost of ownership
* g+ bc becomes just bc

Amazon Elastic Compute Cloud

* No start-up, monthly, or fixed costs
— S0.10 per CPU hour
— S0.20 per GB transferred across Net

* No cost to transfer data between Amazon S3
and Amazon EC2

* More when we do Cloud Computing next
week

Amazon Web Services
Default “community” standard

Compute

— Elastic Compute Service (EC2)

— Elastic MapReduce
— Auto Scaling
Storage

— Simple Storage Service (S3)

— Elastic Block Store (EBS)
— AWS Import/Export
Messaging

— Simple Queue Service (SQS)
— Simple Notification Service (SNS)

e Database
— SimpleDB

— Relational Database
Service (RDS)

 Content Delivery
— CloudFront
* Networking
— Elastic Load Balancing
— Virtual Private Cloud
* Monitoring
— CloudWatch

http://aws.amazon.com/

Elastic Compute Cloud (EC2) Service

 Amazon Machine Image (AMI) is a special type of pre-
configured operating system and virtual application software
which is used to create a VM within EC2

* Use either Pre-configured, templated images or create AMI
to store customized images. Can share AMI (via AMI ID)

* It serves as the basic unit of deployment for services
delivered using EC2. Lease Linux as well as Windows AMI

* See http://aws.amazon.com/amazon-linux-ami/
* VM =Bind an AMI to an Instance

— Multiple Instance Types (see next slide)

— Dynamically scale up/down

— ‘root’ access to VM’s

Elastic Compute Cloud (EC2) Service

* EC2 Instances Types
— http://aws.amazon.com/ec2/instance-types/
— Standard Instance
 Small, Large and Extra-Large
— Micro Instance
— High-Memory Instances
* XL, Double XL, Quadruple XL
— High-CPU Instances
* High-CPU Medium, High-CPU XL
— Cluster Compute Instance
* Cluster Compute Quadruple
— Cluster GPU Instance

Sequence Assembly Performance with different

2000 -

[EY
Ul
o
o

Compute Time (s)
[y
o
o
o

500 -

EC2 Instance Types
(Adatped From Geoffrey Fox)

% Amortized Compute Cost
B Compute Cost (per hour units)

“®=Compute Time

- 6.00

- 5.00

- 4.00

3
Cost ()

- 2.00

- 1.00

- 0.00

Azure

Description: Microsoft’s “Platform as a Service” (Paas)
offering

— Platform that is “Available” and “Scalable”
— Cloud Based around virtualization
Explicit Cost to Use

— No cost to transfer data, only to use/store

“Democratization of Infrastructure”

Rich Data Abstractions

— Large user data items: blobs
— Service state: tables

— Service workflow: queues

— Simple and Familiar Programming Interfaces
e REST: HTTP and HTTPS

Each VM Has...

—
L]
L)
L]
L)
L)
L]
L)
—

-

CSC 7700: Scientific Computing

ficrosoft

'—0 -
r

— :
TV DT

u Winidows Server

u Windows Serveraos

45

CSC 7700: Scientific Computing

Worker Role

46

CSC 7700: Scientific Computing

47

Blobs

Drives

Tables

Queues

=15 @ ||

i

=1 _—
Joog o

CSC 7700: Scientific Computing

48

Azure Virtualization Architecture

Host Partition Guest Partition Guest Partition
(VM)

Public Internet Host OS

Server Core

m Server Enterprise Server Enterprise
stack [P W
: Virtualization §H Virtualization

Load : : Stack : Stack
Balancer E E (Vsc) E (VSC)

AzZure Services (storage

Module E:
Distributed Scientific Computing

To Distribute or not to Distribute?

Distributed Applications Summary

Why How Challenges & How different
Distributed? | Distributed? | Issues from || ?

Montage Processing > Workflow Coordination [1, 2]
local limits enactor

NeKTAR Processing > MPIg Advanced/Co- [17, 4]
local limits reservation
(memory)

Ensemble-based/RE Many SAGA, Coordination [2,3]
compute- “Advert”
intensive task

ClimatePrediction.net Many small BOINC, Failures, [1, 4]
tasks Trickles variable #

workers

SCOOP Peak req., Customized Not robust, adv. [1, 3, 4]

naturally, workflows reservations

Economic

“Observations” on Distributed Applications

O Is large (andrich), but the number of effective and extensible
DA small

« More than just submitting jobs here and therel

O Developing DA is a hard undertaking
 Intrinsic and Extrinsic Factors
« Unigque role of the Execution Environment (Infrastructure)

O Embrace “distributedness”

« Understanding distributedness, heterogeneity & dynamic
execution is fundamental (e.g., Exascale logically distributed
prog. Models)

« Data-centric application will be the drivers!

O Role for Pattern-oriented and Abstractions-based Development

Assertion #1: The space of possible DA is large,

but number of effective DA small

O Distributed Application: That need multiple resources, or can benefit
from the use of multiple resources;

« .. can benefit from increased peak performance, throughput,
reduced time-to-solution

* More than just HPC or HTC Applications
« e.g., DDDAS scenarios

O Ability to develop simple or effective distributed applications is limited

« Applications that utilize multiple resources sequentially, concurrently
or asynchronously is low

O Developing DA > just submitting jobs to remote sites!

What the pieces of distribution are? How these pieces interacte
Flow of information? What is needed to actually deploy and
execute the application?

Assertion #2: Developing DA is a hard undertaking

O Infrinsic reasons why developing DA is fundamentally hard:

Conftrol & Coordination over Multiple & Distributed sites

« Effective coordination in order for whole > sum of the parts
Complex design points; wide-range of models of DA

 Many reasons for using DA, more than (just) peak performance

O Extrinsic:

Execution environments will be dynamic, heterogeneous and varying
degrees-of-control

« Fundamental different variation in role of Execution Environment-
distinguishing feature of DA from “regular environment” HPC

Application types strongly coupled to the infrastructure capabilities,
abstractions/tools, & policy:

+ Often development tools assume “specific” deployment and
execution environments, or don't where needed!

» Policies and tools, e.g production DCI has been missing for DDDAS

Assertion #2: Developing DA is a hard undertaking

O Large number programming systems, tools and environments
 Lack of extensible functionality, interfaces & abstractions

« Interoperability and extensibility become difficult

* Art of tool building needs fo be more of sciencel

O Applications have been brittfle and not extensible:
« Tied to specific tools and/or programming system
« Large number of Incomplete Solutions!

O Unigue Role for abstractions for DA and ClI

« Application formulation, development and execution must be less
dependent on infrastructure & provisioning details

« Abstractions for Development, Deployment & Execution
A Pattern-Oriented, Abstractions-Based Approach
« "Abstractions allows innovation at more interesting layers”

Assertion #3: Embrace Distribution

O “History of computing like pendulum, swings from centralized to distributed”
» Indications this time there is a fundamental paradigm shift due to DATA
« Too much to move around; learn how to do analytics/compute in situ

O Decoupling and delocalization of the producers-consumers of computation
» Localized special services; people and collaborations are distributed

O (lronically) Most applications have been developed to hide from
heterogeneity and dynamism; not embrace them

* Programming models that provide dynamic execution (opposed to
static), address heterogeneity etc

« Logically vs Physically Distributed: NG programming models will need to
support dynamic execution, heterogeneity at a logically-distributed level

Assertion #3: Embrace Distributedness

Corollary: Clouds are not Panacea

O Clouds: Novel or more of the same?@
« Better control over software environment via virtualization

* |llusion of unlimited and immediate available resource can lead to
better capacity planning and scheduling

« Partly due to underlying economic model and SLAS

O Clouds do not remove many/all of the challenges inherent in DA
« Clouds are about provisioning, grids are about federation
« Fundamental challenges in distribution remain
* Makes some thing worse as impose a model of strong localization

« “The reason why we are so well prepared to handle the multi-core erq,
is because we fook the frouble to understand and learn parallel
programming” — Ken Kennedy

O Clouds part of a larger distributed Cl
« Certain tasks better suited for Grids, others on Clouds

Assertion #4: Role for a Pattern-Oriented and

Abstraction-Based Development Cycle

O Relation between Application,
Abstractions and Patterns:

 Application: Need or can use >1 R

. . Application
« Patterns: Formalizations of

commonly occurring modes of
computation, composition, and/or
resource usage

« Devel, Deploy & Exec Phase

« Abstractions: Process, mechanism
or infrastructure to support @

N\

/' contains

Abstraction

commonly occurring usage supports | | becomes -~
~~
Coordination Deployment
Master-Worker (TF, BoT) Replication Pattern
All-Pairs Co-allocation
Data Processing Pipeline Consensus
MapReduce Brokering
AtHome
Pub-Sub
Stream

Assertion #4: Role for a Pattern-Oriented and

Abstraction-Based Development Cycle

O Analysis of Distributed Applications

leads to three types of patterns

. Patt that . th Pattern Tools That Support the Pattern
arterns thar appearin ine Master/Worker-TaskFarm | Ancka, Nimrod, Condor, Symphony, SCE, HPCS
Parallel Pr’og rammin g Master/Worker-BagofTasks | Comet-G, TaskSpace, Condor, TSpaces
All-Pairs All-Pairs
- Patterns driven by distributed Data Processing Pipeline | Pegasus/DAGMan
MapReduce Hadoop, Twister, Pydoop
concerns (eg @HOME, consensus) — TG
« Patterns addressing distributed i Flaps, Meteor, Narada, Gryphon, Sienna
. . Stream DART, DataTurbine
environment concerns exclusively [Replication Giggle, Storm, BitDew, BOINC
H Co-allocation HARC, GUR
(eg Co G”OCGTIOH) Consensus BOINC, Chubby, ZooKeeper
Brokers GridBus, Condor matchmaker
O There exists tools that support
patterns, i.e., provide abstractions
Application Example Coordination Deployment
Montage TaskFarm, Data Processing Pipeline -
NEKTAR - Co-allocation
Coupled Fusion Simulation Stream Co-allocation
Async RE Pub/Sub Replication
Climate-Prediction (generation) Master/Worker, AtHome Consensus
Climate-Prediction (analysis) MapReduce -
SCOOP Master/Worker, Data Processing | -
Pipeline

IDEAS: DA Development Objectives

Interoperable: Ability to work across multiple resources concurrently
* Includes jobs submission, coordination mechanism,

Dynamic: Beyond legacy static execution & resource allocation models

« Decisions at both deployment and run-time
 Dynamical execution is almost fundamental at scale

Extensible: Support new functionality & infrastructure without wholesale
refactoring, i.e., lower coupling to tools & infrastructure

Adaptive/Autonomic: Flexible response to fluctuations in dynamic
resources, availability of dynamic data

Scalable: Along many dimensions and design points

Challenge: To develop DA effectively and efficiently with IDEAS as first
class objectives with simplicity an over-aching concern

Module E: Project Redux

Gain sufficient proficiency with SAGA to write a M-W (from
scratch) application that uses > 1 XSEDE resource?

Use Clouds:
— Can use SAGA to submit jobs to FG-based Clouds?
— Compare Application X on XSEDE on Clouds?

Teamwork is acceptable provided: (i) effort is acknowledged,
(ii) clear intellectual contribution from each

References

Python-based Master-Worker:
— http://pymw.sourceforge.net/

Google MapReduce

— http://code.google.com/edu/parallel/mapreduce-
tutorial.html

http://groups.google.com/group/vscse-big-

data-for-science-2010/web/course-

presentations

http://futuregrid.org/tutorials

M-W: Issues to consider

* https://svn.cct.Isu.edu/repos/saga-projects/applications/master worker

* Aim: Understand trade-off issues along three dimensions:
— (i) work decomposition (ii) distribution and (iii) coordination

* Homework:

1.

Everything local: For 1 Master and same workload vary: N, =2, 4 and
8 Plot times to completion.

With the advert service running remotely, repeat the above.
Compare performance with (1)

With the advert service running distributed: Distribute (equally?) the
workers across a couple of FutureGrid machines. Compare with (i)
and (2)

Extend with user defined “Worker”.. use simple worker function.

