CSC 7700: Scientific Computing

Module D: Simulations and Application Frameworks

Lecture 2: Simulating Complex Systems

Dr Peter Diener

Center for Computation and Technology
Louisiana State University, Baton Rouge, LA

November 15, 2013

i Lsu

Peter Diener CSC 7700: Scientific Computing November 15, 2013

© Goals
© Summary

© Poarallel Computing

@ Component Model

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Goals

£

i LSL

Peter Diener CSC 7700: Scientific Computi November 15, 2013

Goals

o Lecture 1 described the application scientist's point of view.

@ This lecture discusses the computer science issues in simulations and
simulation codes.

o Parallel computing (algorithm design)
o Component model (software design)

@ In most research groups, a computer scientist is an expensive luxury;
only large projects can afford computer scientists.

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Summary

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

@ To go from physics to a simulation, one usually

© Finds a mathematical model (e.g. PDEs) expressing the physics.
Q Discretise the model (e.g. PDEs).
© Implement the discretised equations on a supercomputer

@ Many simulation codes have a similar structure.

o Many supercomputers have a similar architecture.

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Parallel Computing

e 11

i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

HPC History

o Before MPI: Vector architectures, e.g.
Cray Y-MP (until ~ 1992).

@ In the Y-MP, the vector length was 64
words (1 word is 64 bits) and it had 8
vector registers.

@ Much more efficient than scalar
processors (compare conveyor belt vs.
hand assembly).

o Disadvantages: too inflexible for dynamic
data structures, too expensive due to
custom designed (low volume) hardware
and memory system.

i
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

HPC History

o After vector machines cluster architectures became prevalent (e.g.
Cray T3D, 1993 and CM-5, 1991).

o Basic idea: have many simple nodes connected by high-speed network.

@ Nodes need to communicate (exchange messages) during
computation.

o Also called Beowulf architecture, especially if only cheap commodity
components are used.

@ The need for communication lead to the development of MPI.

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

MPI: Message Passing Interface

[SIRaNE 2 [
[1
e MPI is an Application Programming Interface (API); It is THE
industry standard for parallel HPC programming.

@ Supported on all important HPC platforms.

o Very successful (standard since 1994) since it makes it possible to
implement efficient parallel algorithms.

o Note the emphasis on possible rather than easy.

@ www.mpi-forum.org

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Amdahl's Law

@ P: Fraction of code that can be | | m/’LTll

parallelised.) = T
o N: Number of processors used. |:.] i
o Amdahl’s law: “ﬂ

s— b A
(1-P)+P/N :

@ When running on N processes, not necessarily N times as fast.
@ Overhead and non-parallelisable part of the code determines

maximum possible parallel speedup.
@ 100,000-fold speedup requires > 99.999% parallelisation.

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

MPI| Programming

o Efficient MPI parallelisation is complex and tedious.

@ Requires re-designing data type layouts and APls (and then rewriting
the program).

@ To ensure correctness, need good encapsulation of parallelism and
understanding of advanced programming concepts.

@ Design and implementation needs to be carefully thought out in order
to ensure extensibility and portability.

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Domain Decomposition

@ In a domain decomposition scheme,
the discrete elements (points, cells,
particles, ...) are distributed
among the processors.

o Each process handles only those
that it owns (without requiring
communication).

@ Accessing elements from
neighboring processes requires
communication (e.g. at domain
boundaries).

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

ain Decomposition

Without Ghostzones:

processor 0 processor 1

X X

time % ___X_ insufficient data available to
update field at these locations

boundary of physical domain
With Ghostzones:

processor 0 processor 1

X X

dme A %&
X X

ghostzones

boundary of physical domain é\
1)
i LsU

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Domain decomposition

|

£
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

The Wave Equation

Approximating the pressure P(x, t) with a grid function PI.(").

(n+1)

P
‘ PP P
p pm 81’2 a 8X2
i i+l \U{
PO 260 PPl -2 4)

At? Ax?

The error from this time and space discretisation is O(h?).

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

! ! ! ! !
[l et ettt Rl Bl e el ol Bl
I I I I I I I I I I
[t e e e e e e |
| I I I | | I I I l
[t e e e e e e |
I I I | | | I I I I
[e R
[A DA SR KR R SR RN R
I I | | I I I I | |
[DO B (N SR E RN R |
| I I I I I I I I I
[TN PR

Grid structure
GF allocation

¥

Set up coords
Compute At

Initial data

v

Peter Diener

CSC 7700: Scientific Computing

Rotate timelevels
Evolve GF, sync
Apply BCs
Output data

A
i LSL

November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

PROC1 PROC2 v
>< Set up coords
t :“”i ”””” *::“::‘:i”’i”’i”ﬂ:”‘: Compute At
L4 TC:’I:[i II:} Initial data

| | |
D I Rotate timelevels

Evolve GF, sync
X Apply BCs
Output data

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

PROC1 PROC2 v
>< Set up coords
t :“”i ”””” *::“::‘:i”’i”’i”ﬂ:”‘: Compute At
L4 TC:’I:[i II:} Initial data

i | | I 1
T | S Rotate timelevels

Evolve GF, sync
X Apply BCs

x P. Bp. Rp-p x P. Bp. Rp-p Output data

£5
LSl

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation
PROC1 PROC?2 A
>< Set up coords
t :f**i***i***i**f‘*’ﬂ”’l”’:”j”“ Compute At
R A A R Initial data
A T I A -
ot e et T | ‘ [[
e ,Hf::,:}f e e Rotate timelevels
it S s el Sl Tty Evolve GF, sync
L N i e S
00 06 12 1.8 24 30 36 42 48 54 X Apply BCs
X X Output data
P, Rp, Rp_p P, Bp, Pp_p

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

¥

Set up coords
Compute At

Initial data

v

Peter Diener

PROCI PROC2
SIS A R R
! 1 1 1 U Il 1 1 1 1
P e [Il i Bl Sl |
! | | | ! ! ! | | |
it et e Bl | e 1 R O Y B
1 1 1 | ! ! ! 1 | |
[e e B | | A N
)))) T N D D S
I I | | |
| At=AAXmin 0
| I I I I
[T A SO R S
0.0 06 1.2 1.8 24 3.0 3.6 42 48 54 X
X X
P, Pp, Pp_p P, Pp, Pp_p

CSC 7700: Scientific Computing

Rotate timelevels
Evolve GF, sync
Apply BCs
Output data

£5
LSl

November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

PROCI PROC2 >
>< Set up coords
B T T -1 Compute At

| | | Initial data

,,,,,,,,,,,,,,, —

Rotate timelevels

Evolve GF, sync

| |
| |
| |
1 1
| |
e e
00 06 12 1.8 24 30 3.6 42 48 54 X Apply BCs

X X Output data

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

PROCI PROC2 >
>< Set up coords
B T T -1 Compute At

| | | Initial data

,,,,,,,,,,,,,,, —

P —
(P.plu

| |

| |

.

| |
Pp-p 00 06 12 1.8 24 30 3.6 42 48 54 X Apply BCs
X X Output data

Rotate timelevels

Evolve GF, sync

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

PROCI PROC2 A3
>< Set up coords

CoT Compute At

| | Initial data

777777 v

| |
2 } Rotate timelevels

Pp

Pp-p 00 06 12 1.8 24 30 36 42 48 54 X Apply BCs

X X Output data

R TR | Evolve GF, sync

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation
PROCI PROC2 =
>< Set up coords
t :r——i———i———iff#::“::w:i***i***i**ﬂ:*’*: Compute At
A A A T AU Initial data
-
o e At (A A
\ I i [S — ‘ ‘ , Rotate timelevels
o O S S A
Pp —_— Evolve GF, sync
Pp-p 00 06 12 1.8 24 30 3.6 42 48 54 X Apply BCs
X x Output data

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

PROC1 PROC2 v
>< Set up coords
t :“”i ””” i”*::“::‘:i”’i”’i”ﬂ:”‘: Compute At
L l”TCj:]:]:]:} Initial data

| | | | | | |
P T | —— } } : ,‘r Rotate timelevels
Pp | + + ﬁ ﬁ 3 ! ! i Evolve GF, sync
Pp-p 00 06 12 1.8 24 30 3.6 42 48 54 X Apply BCs

X X Output data

£5
LSl

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

PROCI PROC2 =
>< Set up coords
t] R EREEEL Compute At

| | | Initial data

,,,,,,,,,,,,,,, —

Rotate timelevels

l | |
| | |
Pp | —— Evolve GF, sync

Pp_p

| |
| |
| |
1 1
| |
e e
00 06 12 1.8 24 30 3.6 42 48 54 X Apply BCs

X X Output data

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

PROCI PROC2 A3
>< Set up coords

B T T e Compute At

| | | Initial data

,,,,,,,,,,,,,,, —

Rotate timelevels

Evolve GF, sync
5.4 X Apply BCs
X X Output data

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Wave Equation: Algorithm Illustration

Grid structure
GF allocation

PROCI PROC2 A3
>< Set up coords

B T T e Compute At

| | | Initial data

,,,,,,,,,,,,,,, —

P ¢
(Pp |
Ppp | !

Rotate timelevels

Evolve GF, sync
5.4 X Apply BCs
X X Output data

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Load Balancing

@ In the previous example all processes have to perform the same
operation at the same time, i.e. they progress in lock step.

o If one process finish early, it has to idle (wastes time).
o If one process finish late, all others have to idle (much worse!)

o Remedies: try to distribute load evenly (hard to do if different
amount of work has to be done for different elements) or distribute
load dynamically (results in overhead).

o Typical resource allocation problem, very computer sciency, requires
complex (parallel) data structures.

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Ghost Zone Overhead

@ Ghost zones require a memory overhead, since the same array element
is stored on multiple processes.

@ In the wave equation example the overhead was 20%.

@ In a realistic example (e.g. binary black hole evolution) the overhead
can be much larger:
o Assume 30% = 27,000 grid points per process (3D).
o With 5 ghost zones (high order finite differencing) we then have
(30 +2-5)3 = 40% = 64,000 grid points with ghosts.
o Thus we have 403 — 303 = 37,000 ghost points per process.
o This is an overhead of 137%!

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Ghost Zone Overhead

o We need efficient parallel algorithms for current supercomputers in
every corner of the program (Amdahl)!

o MPI is the first choice for implementing parallel algorithms.

e Domain decomposition (e.g. with ghost zones) distributes simulation
data over nodes.
@ Some important computer science aspects:

o Designing and implementing efficient distributed data types.

o Load balancing and scheduling to ensure processors don't idle.

o Potentially overlap communication with computation in order to hide
the latency and overhead of the communication.

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Component Model

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Simulation Code Requirements

o Reliability: So that we can trust the results.

o Extensibility: So that researchers can add and experiment with new
ideas.

o Usability: So that graduate (or under graduate) students don’t waste
too much time.

@ Performance: So that we don't waste valuable resources.

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Complex simulatio

@ Real world problems are complex, not
just a single physics system.

o Consequently modern simulations may
contain several physical models at the
same time.

o Each may have its own set of PDEs
and its own discretisation.

@ How to handle this complexity?

i Lsu

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Example: Long Gamma-Ray Burst

Fe-group nuclei
Si

~107 km

(not drawn to scale)

Protoneutron Star Iron Care Coliapse

Accretion ' ' Accretion

Collapse to a Black Hole | | with Accretion Disk

Jet Formation and
Sustainment
4—> JetP ion / Breakout

Disruption ofShr
Afterglow Emission

Peter Diener CSC 7700: Scientific Computing

General Relativity (black hole).
Relativistic hydrodynamics (star).

Microphyscis, equation of state (shock
wave).

Neutrino radiation (cooling, heating).

Magnetic fields (jet formation —
mechanism not yet understood).

Photon radiation (afterglow).

N
i LSL

November 15, 2013

Typical Research Scenario

o Different models are contributed by different people (each expert in
his/her area) and then combined into a single code.

o Physicists contribute models.

o Mathematicians contribute discretisations methods.

o Computer scientists need to contribute:

o A software architecture that makes this possible in a safe yet efficient
manner.

@ The physicist, mathematician and computer scientist need to work
closely together (overcome language barrier) in order to achieve a
good implementation.

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Collaboration Problems

o Example: The Einstein Toolkit (not untypical)

Parts of the code is 13+ years old.

Graduate students leave after 3 productive years.

Post docs may only be around for 1 or 2 years before moving on.
Many original authors are not available anymore.

Developers distributed over many locations on several continents.
Most physicists/mathematicians are not good programmers.

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Component Architecture

Split program into independent components.

A framework provides lean glue between these.

Each component is developed independently by a small group of
developers.

The end user assembles the components needed to perform the
simulations.

There is no central control.

There is no authoritative version.

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Component Framework

o Basic principle: control inversion where main program is provided by
framework and components look like libraries.

o No component is “more important”.

@ The Framework itself does no real work. It just glues components
together.

o Components don't interact directly with each other. Only via the
framework and the rules set by the framework.

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Example: The Einstein Toolkit

einsteir
hoGikt

o Goal: Have state-of-the-art set of tools for
Numerical Relativity available as open
source.

@ Organized by the Einstein Consortium.
@ Open to everyone.
o See http://einsteintoolkit.org

A
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Example: The Einstein Toolkit

Core Einstein Toolkit
svn.einsteintoclkit.org

Cactus Flesh
and GOTK
svn.cactuscode.org

Einstein Toolkit
SVnLpartnersite.org

Tools, Parameter Files,

& Data
svn.einsteintoolkit.org

Assemble
Simulation

GetGomponents

‘Group Medules Individual Modules
ovs.groupthorns.org evs.mythorns.org

T
i LSL

November 15, 2013

ter Diener CSC 7700: Sci

The Einstein Toolkit: People

@ About 50 contributors over the past decade, both from physics and
computer science. Many has left the field.

o Currently 95 members from 50 different groups and institutions in 15
different countries.

o Currently 9 maintainers from 6 different sites.

@ > 250 publications, > 40theses in physics, astronomy and computer
science building on these components.

o Countless talks at the major astrophysics conferences/meetings are
based on these components.

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

The Einstein Toolkit: Components sampler

@ Evolution systems (both spacetime and matter).
@ Boundary conditions (both symmetry and physical).
o Initial conditions (both spacetime and matter).
o Excision/Turduckening.

o Wave extraction.

@ Horizon finding.

e Time stepping methods (multiple).

o Finite differencing.

o Adaptive Mesh Refinement (AMR) driver.

o 1/O methods (output and checkpoint/restart).
o Web server.

°

Twitter client. Fi\;
LSl

Peter Diener CSC 7700: Scientific Computing November 15, 2013

Component Model Summary

@ Modern simulation codes are complex and can contain multiple
physics models.

@ The component model can provide the necessary abstraction and
encapsulation.

@ The software framework provides the glue between components and
allow the definition of clean interfaces.

o Important for research: Enables loosely coupled long-distance
collaborations.

N
i LSL

Peter Diener CSC 7700: Scientific Computing November 15, 2013

	Goals
	Summary
	Parallel Computing
	Component Model

