
CSC 7700: Scientific Computing
Module D: Simulations and Application Frameworks

Lecture 2: Simulating Complex Systems

Dr Peter Diener

Center for Computation and Technology
Louisiana State University, Baton Rouge, LA

November 15, 2013

Peter Diener CSC 7700: Scientific Computing November 15, 2013



1 Goals

2 Summary

3 Parallel Computing

4 Component Model

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Goals

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Goals

Lecture 1 described the application scientist’s point of view.

This lecture discusses the computer science issues in simulations and
simulation codes.

Parallel computing (algorithm design)
Component model (software design)

In most research groups, a computer scientist is an expensive luxury;
only large projects can afford computer scientists.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Summary

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Summary

To go from physics to a simulation, one usually
1 Finds a mathematical model (e.g. PDEs) expressing the physics.
2 Discretise the model (e.g. PDEs).
3 Implement the discretised equations on a supercomputer

Many simulation codes have a similar structure.

Many supercomputers have a similar architecture.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Parallel Computing

Peter Diener CSC 7700: Scientific Computing November 15, 2013



HPC History

Before MPI: Vector architectures, e.g.
Cray Y-MP (until ∼ 1992).

In the Y-MP, the vector length was 64
words (1 word is 64 bits) and it had 8
vector registers.

Much more efficient than scalar
processors (compare conveyor belt vs.
hand assembly).

Disadvantages: too inflexible for dynamic
data structures, too expensive due to
custom designed (low volume) hardware
and memory system.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



HPC History

After vector machines cluster architectures became prevalent (e.g.
Cray T3D, 1993 and CM-5, 1991).

Basic idea: have many simple nodes connected by high-speed network.

Nodes need to communicate (exchange messages) during
computation.

Also called Beowulf architecture, especially if only cheap commodity
components are used.

The need for communication lead to the development of MPI.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



MPI: Message Passing Interface

MPI is an Application Programming Interface (API); It is THE
industry standard for parallel HPC programming.

Supported on all important HPC platforms.

Very successful (standard since 1994) since it makes it possible to
implement efficient parallel algorithms.

Note the emphasis on possible rather than easy.

www.mpi-forum.org

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Amdahl’s Law

P: Fraction of code that can be
parallelised.

N: Number of processors used.

Amdahl’s law:

S =
1

(1− P) + P/N

When running on N processes, not necessarily N times as fast.

Overhead and non-parallelisable part of the code determines
maximum possible parallel speedup.

100,000-fold speedup requires > 99.999% parallelisation.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



MPI Programming

Efficient MPI parallelisation is complex and tedious.

Requires re-designing data type layouts and APIs (and then rewriting
the program).

To ensure correctness, need good encapsulation of parallelism and
understanding of advanced programming concepts.

Design and implementation needs to be carefully thought out in order
to ensure extensibility and portability.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Domain Decomposition

In a domain decomposition scheme,
the discrete elements (points, cells,
particles, . . . ) are distributed
among the processors.

Each process handles only those
that it owns (without requiring
communication).

Accessing elements from
neighboring processes requires
communication (e.g. at domain
boundaries).

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Domain Decomposition

Without Ghostzones:

insufficient data available to
update field at these locations

processor 0 processor 1

boundary of physical domain

time

With Ghostzones:
processor 0

time

boundary of physical domain

ghostzones

copy

processor 1

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Domain decomposition

Peter Diener CSC 7700: Scientific Computing November 15, 2013



The Wave Equation

Approximating the pressure P(x , t) with a grid function P
(n)
i .

Pi

(n)

P

P
(n)

Pi

(n−1)

Pi−1

(n)

i

(n+1)

i+1

∂2P

∂t2
= v2∂

2P

∂x2

⇓

P
(n+1)
i − 2P

(n)
i + P

(n−1)
i

∆t2
= v2

P
(n)
i+1 − 2P

(n)
i + P

(n)
i−1

∆x2

The error from this time and space discretisation is O(h2).

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x
P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P
Pp

P
Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x
P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P
Pp

P
Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x
P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P
Pp

P
Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x
P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P
Pp

P
Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x
P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P
Pp

P
Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x

P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P
Pp

P
Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x

P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P

Pp
P

Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x

P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P

Pp
P

Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x

P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P

Pp
P

Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x

P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P

Pp
P

Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x

P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P

Pp
P

Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x

P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P

Pp
P

Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Wave Equation: Algorithm Illustration

t

x

PROC1 PROC2

x, P, Pp, Pp p x, P, Pp, Pp p

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2 4.8 5.4

x x

P, Pp, Pp p P, Pp, Pp p

∆t = λ∆xmin

Pp
P

Pp p

Pp p
Pp

P
Pp

P
Pp p

Pp p
Pp

P

Grid structure
GF allocation

Set up coords

Compute ∆t

Initial data

Rotate timelevels

Evolve GF, sync

Apply BCs

Output data

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Load Balancing

In the previous example all processes have to perform the same
operation at the same time, i.e. they progress in lock step.

If one process finish early, it has to idle (wastes time).
If one process finish late, all others have to idle (much worse!)

Remedies: try to distribute load evenly (hard to do if different
amount of work has to be done for different elements) or distribute
load dynamically (results in overhead).

Typical resource allocation problem, very computer sciency, requires
complex (parallel) data structures.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Ghost Zone Overhead

Ghost zones require a memory overhead, since the same array element
is stored on multiple processes.

In the wave equation example the overhead was 20%.

In a realistic example (e.g. binary black hole evolution) the overhead
can be much larger:

Assume 303 = 27, 000 grid points per process (3D).
With 5 ghost zones (high order finite differencing) we then have
(30 + 2 · 5)3 = 403 = 64, 000 grid points with ghosts.
Thus we have 403 − 303 = 37, 000 ghost points per process.
This is an overhead of 137%!

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Ghost Zone Overhead

We need efficient parallel algorithms for current supercomputers in
every corner of the program (Amdahl)!

MPI is the first choice for implementing parallel algorithms.

Domain decomposition (e.g. with ghost zones) distributes simulation
data over nodes.

Some important computer science aspects:

Designing and implementing efficient distributed data types.
Load balancing and scheduling to ensure processors don’t idle.
Potentially overlap communication with computation in order to hide
the latency and overhead of the communication.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Component Model

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Simulation Code Requirements

Reliability: So that we can trust the results.

Extensibility: So that researchers can add and experiment with new
ideas.

Usability: So that graduate (or under graduate) students don’t waste
too much time.

Performance: So that we don’t waste valuable resources.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Complex simulations

Real world problems are complex, not
just a single physics system.

Consequently modern simulations may
contain several physical models at the
same time.

Each may have its own set of PDEs
and its own discretisation.

How to handle this complexity?

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Example: Long Gamma-Ray Burst

General Relativity (black hole).

Relativistic hydrodynamics (star).

Microphyscis, equation of state (shock
wave).

Neutrino radiation (cooling, heating).

Magnetic fields (jet formation –
mechanism not yet understood).

Photon radiation (afterglow).

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Typical Research Scenario

Different models are contributed by different people (each expert in
his/her area) and then combined into a single code.

Physicists contribute models.

Mathematicians contribute discretisations methods.

Computer scientists need to contribute:

A software architecture that makes this possible in a safe yet efficient
manner.

The physicist, mathematician and computer scientist need to work
closely together (overcome language barrier) in order to achieve a
good implementation.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Collaboration Problems

Example: The Einstein Toolkit (not untypical)

Parts of the code is 13+ years old.
Graduate students leave after 3 productive years.
Post docs may only be around for 1 or 2 years before moving on.
Many original authors are not available anymore.
Developers distributed over many locations on several continents.
Most physicists/mathematicians are not good programmers.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Component Architecture

Split program into independent components.

A framework provides lean glue between these.

Each component is developed independently by a small group of
developers.

The end user assembles the components needed to perform the
simulations.

There is no central control.

There is no authoritative version.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Component Framework

Basic principle: control inversion where main program is provided by
framework and components look like libraries.

No component is “more important”.

The Framework itself does no real work. It just glues components
together.

Components don’t interact directly with each other. Only via the
framework and the rules set by the framework.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Example: The Einstein Toolkit

Goal: Have state-of-the-art set of tools for
Numerical Relativity available as open
source.

Organized by the Einstein Consortium.

Open to everyone.

See http://einsteintoolkit.org

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Example: The Einstein Toolkit

Peter Diener CSC 7700: Scientific Computing November 15, 2013



The Einstein Toolkit: People

About 50 contributors over the past decade, both from physics and
computer science. Many has left the field.

Currently 95 members from 50 different groups and institutions in 15
different countries.

Currently 9 maintainers from 6 different sites.

> 250 publications, > 40theses in physics, astronomy and computer
science building on these components.

Countless talks at the major astrophysics conferences/meetings are
based on these components.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



The Einstein Toolkit: Components sampler

Evolution systems (both spacetime and matter).

Boundary conditions (both symmetry and physical).

Initial conditions (both spacetime and matter).

Excision/Turduckening.

Wave extraction.

Horizon finding.

Time stepping methods (multiple).

Finite differencing.

Adaptive Mesh Refinement (AMR) driver.

I/O methods (output and checkpoint/restart).

Web server.

Twitter client.

Peter Diener CSC 7700: Scientific Computing November 15, 2013



Component Model Summary

Modern simulation codes are complex and can contain multiple
physics models.

The component model can provide the necessary abstraction and
encapsulation.

The software framework provides the glue between components and
allow the definition of clean interfaces.

Important for research: Enables loosely coupled long-distance
collaborations.

Peter Diener CSC 7700: Scientific Computing November 15, 2013


	Goals
	Summary
	Parallel Computing
	Component Model

