next up previous contents
Next: Appendix: Integrations Over the Up: Extract Previous: Appendix: Regge-Wheeler Harmonics   Contents

Appendix: Transformation Between Cartesian and Spherical Coordinates

First, the transformations between metric components in $(x,y,z)$ and $(r,\theta,\phi)$ coordinates. Here, $\rho=\sqrt{x^2+y^2}=r\sin\theta $,

\begin{eqnarray*}
\frac{\partial x}{\partial r}
&=&
\sin\theta \cos\phi
=
...
...a \cos\phi
=
x
\\
\frac{\partial z}{\partial \phi }
&=&
0
\end{eqnarray*}

\begin{eqnarray*}
\gamma_{rr} &=&
\frac{1}{r^2}
(x^2\gamma_{xx}+
y^2\gamma_{...
...phi \phi } &=&
y^2\gamma_{xx}
-2xy\gamma_{xy}
+x^2\gamma_{yy}
\end{eqnarray*}

or,

\begin{eqnarray*}
\gamma_{rr}&=&
\sin^2\theta \cos^2\phi \gamma_{xx}
+\sin^2\the...
...mma_{xx}
-2\sin\phi \cos\phi \gamma_{xy}
+\cos^2\phi\gamma_{yy})
\end{eqnarray*}

We also need the transformation for the radial derivative of the metric components:

\begin{eqnarray*}
\gamma_{rr,\eta}&=&
\sin^2\theta \cos^2\phi \gamma_{xx,\eta}
+...
...2\sin\phi \cos\phi \gamma_{xy,\eta}
+\cos^2\phi\gamma_{yy,\eta})
\end{eqnarray*}