next up previous contents
Next: Using This Thorn Up: EvolSimple Previous: Abstract   Contents

Physical System

The line element is

\begin{displaymath}
ds^2 = -\alpha^2 dt^2 + \gamma_{ij} dx^i dx^j,
\end{displaymath} (part301)

where $\alpha$ is the lapse and $\gamma_{ij}$ the 3-metric. Defining $n$ to be the normal to the slice, we have the extrinsic curvature $K_{ij}$ given by
\begin{displaymath}
K_{ij} = \frac{1}{2}{\cal L}_n \gamma_{ij}
\end{displaymath} (part302)

where ${\cal L}$ is the Lie derivative.

The ADM equations then evolve the spatial three metric $\gamma_{ij}$ and the extrinsic curvature $K_{ij}$ using

$\displaystyle \frac{d}{dt} \; \gamma_{ij}$ $\textstyle =$ $\displaystyle -2\alpha K_{ij},$ (part303)
$\displaystyle \frac{d}{dt} \; K_{ij}$ $\textstyle =$ $\displaystyle -D_{i}D_{j}\alpha + \alpha \left(
\rule{0mm}{4mm} K K_{ij} - 2 K_{ik}K^{k}{}_{j} \right),$ (part304)

with
\begin{displaymath}
\frac{d}{dt} = \partial_t .
\end{displaymath} (part305)

Here $D_{i}$ is the covariant derivative associated with the three-dimensional metric $\gamma_{ij}$.


next up previous contents
Next: Using This Thorn Up: EvolSimple Previous: Abstract   Contents