next up previous contents
Next: Definitions Up: ADMMacros Previous: C   Contents


Macros

Macros exist for the following quantities

Calculates Macro Name Sets variables
All first spatial derivatives of lapse, $\alpha_{,i}$: DA DA_DXDA, DA_DYDA, DA_DZDA
All second spatial derivatives of lapse, $\alpha_{,ij}$: DDA DDA_DXXDA, DDA_DXYDA, DDA_DXZDA, DDA_DYYDA, DDA_DYZDA, DDA_DZZDA
All second covariant spatial derivatives of lapse, $\alpha_{;ij}$: CDCDA  
All first spatial derivatives of shift, $\beta^{i}_{\;\;j}$: DB  
All first covariant derivatives of the extrinsic curvature, $K_{ij;kl}$ CDK  
First covariant derivatives of the extrinsic curvature, $K_{ij;x}$, $K_{ij;y}$, $K_{ij;z}$ CDXCDK, CDYCDK, CDZCDK  
Determinant of 3-metric: DETG  
Upper 3-metric, $g{ij}$: UPPERMET  
Trace of extrinsic curvature $trK$: TRK  
Trace of stress energy tensor: TRT  
Hamiltonian constraint: HAMADM  
Partial derivatives of extrinsic curvature, $K_{ij,x}$, $K_{ij,y}$, $K_{ij,z}$: DXDK, DYDK, DZDK  
First partial derivatives of 3-metric, $g_{ij,x}$, $g_{ij,y}$, $g_{ij,z}$: DXDG, DYDG, DZDG  
All first partial derivatives of 3-metric, $g_{ij,k}$: DG  
First covariant derivatives of 3-metric, $g_{ij;x}$, $g_{ij;y}$, $g_{ij;z}$: DXDCG, DYDCG, DZDCG  
Second partial derivatives of 3-metric, $g_{ij,xx}$, $g_{ij,xy}$, $g_{ij,xz}$: DXXDG, DXYDG, DXZDG, DYYDG, DYZDG, DZZDG  
All second partial derivative of 3-metric, $g_{ij,lm}$ DDG  
Ricci tensor $R_{ij}$: RICCI  
Trace of Ricci tensor $R$: TRRICCI  
Christoffel symbols of first kind: $\Gamma_{cab}$ CHR1  
Christoffel symbols of second kind $\Gamma^{c}_{\;\;ab}$: CHR2  
Momentum constraints MOMX, MOMY, MOMZ  
Source term in evolution equation for conformal metric, $\tilde{g}_{ij,t}$: DCGDT  


next up previous contents
Next: Definitions Up: ADMMacros Previous: C   Contents