next up previous contents
Next: Gaussian Up: IDScalarWave Previous: Purpose   Contents

Spherically Symmetric Solutions

The general spherically symmetric solution can be written

\begin{displaymath}
\Psi(r,t) = \frac{1}{r}\left(f(r+t)+g(r-t)\right)
\end{displaymath} (part1071)

where the functions $f$ and $g$ can be freely chosen.

Making the additional requirement of time symmetry at $t=0$, forces

\begin{displaymath}
f(r)=g(r)
\end{displaymath} (part1072)

Thus if the solution at t=0 is given by $\phi(r)$, the general solution will be
\begin{displaymath}
\Psi(r,t) = \frac{1}{2r}\left( (r+t)\phi(r+t)+(r-t)\phi(r-t) \right)
\end{displaymath} (part1073)