
Available online at www.sciencedirect.com

1877–0509 © 2011 Published by Elsevier Ltd. Selection and/or peer-review
under responsibility of Prof. Mitsuhisa Sato and Prof. Satoshi Matsuoka
doi:10.1016/j.procs.2011.04.066

Procedia Computer Science 4 (2011) 627–636

Procedia
Computer
Science Procedia Computer Science 00 (2009) 000–000

www.elsevier.com/locate/procedia

International Conference on Computational Science, ICCS 2011

A-R-E: The Author-Review-Execute Environment

Wolfgang Müllera*, Isabel Rojasa, Andreas Eberhartb, Peter Haaseb, Michael Schmidtb
aSDBV group, HITS, 69118 Heidelberg, Germany

bfluid Operations,69190 Walldorf, Germany

Abstract

The Author-Review-Execute (A-R-E) is an innovative concept to offer under a single principle and platform an environment to
support the life cycle of an (executable) paper; namely the authoring of the paper, its submission, the reviewing process, the
author's revisions, its publication, and finally the study (reading/interaction) of the paper as well as extensions (follow ups) of the
paper. It combines Semantic Wiki technology, a resolver that solves links both between parts of documents to executable code or
to data, an anonymizing component to support the authoring and reviewing tasks, and web services providing link perennity.

Keywords: Semantic Wiki, Linked Data, Extended links

1. Introduction

The main goal of an executable paper is to increase comprehension, reproducibility and sustainability of electronic
publications. We take a data-driven, loosely coupled, and distributed approach to support the life cycle of an
(executable) paper: authoring, reviewing, publication and study. In the A-R-E system the main objective is to provide
an environment where a publication is a structured complex entity enriched with features that support further
exploration of the facts and hypotheses stated in the paper, as well as related information from external sources.

We will present the concept and features of the A-R-E based on the types of users of the system, which we have
defined as: author(s), reviewer(s), publisher and final reader(s). For each of these we consider (i) the desired user
experience and (ii) the technical needs for the necessary functionality.

The authors of an executable paper require an environment that supports him or her in providing, enriching and
linking content. It has to be simple and flexible; otherwise, no one will enhance the papers as needed. For increasing
adoption, the authoring environment needs to preserve the freedom of choice of tools, e.g. the data analysis tools to
be used. It is hard to imagine that scientists will commit to one platform that restricts the way that they do
experiments or produce data, so the possibility to export and import text files and data is crucial. Linking
information should be possible at different levels of details and to different information source types. The use of
links from named entities and figures or tables into Semantic Web content (web-based databases, web-enabled

* Corresponding author. Tel.: +49-6221-533-231; fax: +49-6221-533-231.
E-mail address: wolfgang.mueller@h-its.org.

369.indd 627 5/3/11 10:53:08 AM

628 Wolfgang Müller et al. / Procedia Computer Science 4 (2011) 627–636
 Author name / Procedia Computer Science 00 (2011) 000–000

articles, etc.) are necessary (now widely available, see Attwood et al. [1]) features that need to be supported.
Furthermore, it would be desirable to allow the author to link sections (chunks) of information to sections within
external (referenced) articles.

Apart from the authoring aspects per se, the system should support the author in submission as well as in the
revision process (interaction with the reviewer). The author needs to be able to include additional information
supporting the work presented in a paper, such as files with raw data from which a diagram is generated, or a
program used to process the data, or even links to specific parts of a referenced publication (and not to the
publication as a whole). Supporting theses needs would offer the authors an integrated platform for the management
of their executable paper and its parts, covering the processes of writing, referencing, annotation, proofing,
submission, and revision of the paper.

From the reviewers’ point of view, the executable paper environment should facilitate the understanding and
verification of the paper. The reviewer needs to have access to supplementary files such as data and executable code.
Easy navigation and commenting of the paper’s context using its structure is also a desired feature that helps the
reviewer in his or her tasks. Referencing from one section to another allows the reviewer to concentrate on a certain
aspect of the paper, for example, to follow-up on a given topic mentioned in the abstract, the author can link the
information in the abstract to the related section, allowing the reviewer to use this link during the revision process.
One of the main tasks in the reviewing process is the verification of the paper by consulting related work or
information, which has to be supported by the system. The reviewer should be allowed to write his or her review
using references to the content of the paper, to external references or to his or her own supplementary content or to
the paper’s supplementary files.

Often, resolving references means for a reader not only getting the paper B referenced, but also finding out which
paragraph is providing the information bit pertinent to paper A. Similar considerations apply to figures in a paper.
One would like to be able to navigate from data points in a plot to the data items in raw experimental data that led to
these points, say by being pointed to an excel sheet column with experimental data. Furthermore, one would like to
be able to navigate into the program code that led to a given aggregation of data. Evidently one will not be
concerned in programming details, but rather in the implementation of the main bits of code leading to a plot,
graph, or other figure. If given the chance, one would like to be able to explore the data further, either by changing
the code applied or the data analyzed. It is important that the reviewing environment facilitates the communication
reviewer-author and reviewer-publisher, all bit it in a secure and anonymous (for the case author-reviewer) manner.

Publishers need to control the anonymous peer review process, e.g. give the reviewers rights to view the document
and supplementary data before acceptance and then open up the publication of the data as needed. By facilitating the
interlinking among its papers the system can improves the quality of research as well as the repeatability of
associated experiments.

The final reader can be viewed as a reviewer with limited authorization. The system should offer the same facilities
as to the reviewer for the navigation and exploration of the paper, but these will be restricted by the access rights
granted by the paper’s authors to the supplementary files of the paper. If authorized by the publisher the system will
allow the reader to make his or her personal “notes” on the paper, annotations and complementary information. In
the last few years there have been multiple efforts towards augmenting the information provided by a publication, in
order to facilitate its comprehension as well as to extend the knowledge it provides. Several Web-based tools allow
the identification of terms in the paper against a set of ontologies or databases adding relevant hyperlinks to target
pages. Attwood et al. [1] provides a broad and detailed overview of techniques and efforts.

Taking into account the features that we understand and think are required by the different types of users of an
executable paper environment, the rest of this document will be structured as follows. First we will define our
concept of the A-R-E system, highlighting the main goals that we aim to achieve. We then present the main
components of the A-R-E system. After this we exemplify how an author and a reviewer could use the system and
highlight also the role of each of the A-R-E components.

369.indd 628 5/3/11 10:53:08 AM

Wolfgang Müller et al. / Procedia Computer Science 4 (2011) 627–636 629
 Author name / Procedia Computer Science 00 (2011) 000–000

2. Concept

Our mission is to support data-driven navigation, analysis, visualization, and annotation of the publication in the
different stages of the life-time of a paper: creation, revision, publication, analysis and extensions (follow-ups).

Figure 1: Architecture of the A-R-E system

We consider that the author of a document is often behind a firewall, is not always root on his/her machine and does
not necessarily want to go through extended administrative motions just for sharing some data with a reviewer.
Furthermore we need to respect the reviewer's anonymity during the review. Finally, we need to resolve URLs
specifying document regions using an appropriate component. As a consequence, the A-R-E system consists of the
Information Workbench (IWB) [7], a Semantic Wiki-based tool for authoring and linking content, plus a proxy
server component that reside at the publisher's location. The proxy server takes care of anonymization and firewall
circumvention. In addition there is a local component running at the location of the author's that interacts with the
proxy server component. This base architecture is depicted in Fig. 1 and will be further explained below.

Figure 2 below illustrates a simplified diagram of a paper’s life cycle, indicating for each state the transition actions
and the type of user that executes it. Each state is normally comprised by more than one task, which in turn can be
iterative, so there could be multiple cycles in the writing process before submitting the final draft of the paper.

Figure 2: State flow diagram of the phases in the life cycle of the (executable) paper

Although the paper will go through different phases and probably suffer modifications or additions in these phases,
we depart from a general intrinsic structure, which defines the system functionalities of the system. Figure 3 shows
how an executable paper is represented in our system. At its core, the authors model the structure of their
publication. Typically, it would be defined according to the sections and subsections contained in the paper, such as
Abstract, Introduction, and other chapters. When importing a paper from an existing document (e.g., a Word file),
the system could propose a structure according to the content of the document.

369.indd 629 5/3/11 10:53:09 AM

630 Wolfgang Müller et al. / Procedia Computer Science 4 (2011) 627–636 Author name / Procedia Computer Science 00 (2011) 000–000

Figure 3: Structure of an executable paper in our A-R-E system

Apart from some basic constraints enforced by the publisher (like, e.g., the presence of an Abstract), the authors are
totally free in defining the structure of their publication, and all sections/subsections are semantically linked to each
other. Following the paradigms implemented in the Information Workbench, these semantic links are stored in the
form of RDF data [8], the W3C standard for representing and exchanging semantic information. The semantic links
connecting the components of the paper can be of benefit within the reviewing process, during publishing, and also
once the paper has been published: given that parts of the paper are treated as first-class citizens in our model, the
publisher could easily generate a table of contents, extract abstracts, or interlink related sections (even across
different publications). As another example, once the paper has been published readers could annotate individual
sections with comments, additional information, or related work.

As also shown in the figure, each section/subsection is associated with a Semantic Wiki page. These wiki pages can
be collaboratively edited by the authors and, later on, processed by the reviewers. Such Semantic Wikis, which have
recently gained attention not only in Semantic Web community (see e.g. [14]), differ from traditional wikis in that
they allow to embed widgets that build upon an underlying semantic database, thus making it possible to create
dynamic charts and dashboards that are filled according to the content contained in the underlying database. The
Information Workbench offers built-in support to import data given in common formats such as tabular data,
relational data, or RDF data. In addition, authors can choose to integrate both local data and data public data from
global repositories. Coming with the proliferation of executable papers, we may also expect that it becomes common
practice that authors publish associated data in the publisher's side, in a globally accessible data repository. Using
the Information Workbench, the authors can then embed dynamic charts, dashboards, or other data visualization
from public global data and local data directly into the Semantic Wiki pages, possibly combining data from multiple
sources into a single dashboard. Furthermore, as another central feature authors can use the Semantic Wiki to put
semantic links to executable code, which can later on be verified and run by the reviewers (we will discuss this issue
in more detail later in this section).

We want to enable the linking of information in a paper to information within the paper as well as to external
resources. These sources can be either data files or allow the processing of data. In addition to that, we want to
enable the linking of parts of documents to parts of documents as an afterthought. Linking at the data level is the
basis for the success of the Semantic Web. HTML allows linking from marked regions in documents to other
documents and even anchors in documents. However, these anchors must have been prepared beforehand by the
author of a document. In other words, the author of a document decides how the reader of a document is to read the
document, which parts are to be referenced and which is the minimal granularity that can be referenced. Similarly,
PDFs allow linking to pages or to named destinations that have to be created by the author.

This poverty in deep region-to-region linking possibilities is in stark contrast to the fact that there are quite some
languages for specifying locations in general text, XML [9], spreadsheets, or even program code. For text, there are

369.indd 630 5/3/11 10:53:09 AM

Wolfgang Müller et al. / Procedia Computer Science 4 (2011) 627–636 631
 Author name / Procedia Computer Science 00 (2011) 000–000

numerous examples such as the command language of the VI text editor (http://www.vim.org/). XPath [10] enables
specifying regions in XML. In Spreadsheets, there is an implicit de facto standard across spreadsheets software
(such as Excel, Open Office and others) on how to specify sheet regions in formulas. Aspect Oriented Programming
[2] is about regions of code the so-called point-cuts to be affected by code changes, the so-called advices. All these
region specification approaches can be used for enabling deep linking. Within our A-R-E concept, we are following
a pragmatic way to enable deep linking without having to change or adapt web standards. We have chosen to enable
linking via the use of a proxy server/anonymizer component which will be described in detail below. This notion
of extended linking is complementary to efforts to join Excel and ontologies for improved use of Excel data [3,4,5].

Another important point that needs to be taken into account when defining the system is the provenance of
information and tracking of revisions. This is a key factor to maintaining the integrity of an executable paper. The
system implicitly will track changes and origin of information, check for lost links and modifications to referenced
files. Here we plan to use techniques similar to those used in the SysMO-DB SEEK [6] (i.e. detecting file changes
by generating, shipping and comparing cryptographic hashes).

Complementing the previous components, last but not least each publication has associated meta data. This meta
data includes information such as the title, the authors, categorization information, keywords, associated proceeding
information, etc. It is filled in by the authors using predefined forms when submitting the paper and will be aligned
with common ontologies for publication meta data such as dublincore (http://dublincore.org/), to increase the
reusability of the meta data description. Hence, as a major benefit, the publisher can directly publish all its meta data
in a semantic data format such as RDF, to make it available to the scientific community. Related tasks such as the
meta data annotation and data publishing processes are supported by the Information Workbench out-of-the-box.

Our conceptual view of the executable paper makes no reference to the location of the files (data, executables, or
other supplementary files) that can be linked from the executable paper. The idea behind this is that this should be
more or less seamless for the reviewers and readers, and controllable by the author. Inherently, the A-R-E is a
distributed system: with distributed file management and distributed execution of tasks (all be it limited for the time
being). In addition to the conceptual view of the executable paper, we need to cater for the concepts supporting the
distributed nature of the system, namely free choice of storage location, assuring author security and reviewer
anonymity, and later virtual machines for execution.

Free choice of storage location (data local, remote, or in the cloud): This functionality is closely linked to import
functionality. The truth in modern science is that data can be at many places, the workstation at the desk, the
computing center of the institution, the cloud, and other big data centers. Some of the data may be too big to ship by
wire. Furthermore, we assume that most data analysis (e.g. on protein sequences, seismic data etc.) are carried out
with specialized tools outside the system and that within the paper the author can reference the data, the tools, and
the derived data, while these may reside outside the system.

An executable paper can refer to (or contain) the tools/programs that were used to process a given dataset or to
obtain certain results. These elements (e.g. applications, data-sets, and results) can be stored in different locations,
e.g. in the author’s server, in the publisher’s server, or in another (cloud) server. The system will provide the
mechanisms to keep track of the referred elements and the relations between them (e.g. a certain file is the result of
applying a certain tool/method on a certain set of data). Apart from defining his/her tools for data processing,
authors, reviewers, and readers will also be able to apply (and refer to) tools and applications supplied by the system
for a wide palette of data types, such as geographical data or protein data. Furthermore, authors will be able to create
new widgets to incorporate (new) data analysis and processing tools into the A-R-E system, making them directly
available to other users of the system.

Assuring author security and reviewer anonymity: Blind peer-review is still the prevalent way of evaluating
papers. However, consider the following scenario: An executable paper has been submitted. As part of reading the
executable paper the reviewer accesses a data file residing on a machine controlled by the author. Doing so, he
leaves an IP address on the author’s server. The IP address will allow the author to find out the reviewer’s institution
and (given a sufficiently small research domain) it will enable the author to find out the reviewer’s identity. At the
same time, in case of a hacking attack by the reviewer, the author would like to know who accessed his data and

369.indd 631 5/3/11 10:53:09 AM

632 Wolfgang Müller et al. / Procedia Computer Science 4 (2011) 627–636
 Author name / Procedia Computer Science 00 (2011) 000–000

when. Both reader anonymity and author security are best achieved using an anonymizing proxy server under the
control of the editor, as further described below.

Virtual machines for reproducibility: Providing a virtual machine that reproduces the conditions under which a
certain application was ran goes beyond the scope of the first prototype that we aim to build. However, our
prototype will provide the basis for the implementation of such features in future versions of our system. We will
create the appropriate meta-data description in order to allow the author to specify the hardware and software
requirements for the execution of the application, as well as meta-data on the result files describing the conditions
under which these results were obtained.

3. Components of an A-R-E System

In this section we will describe the architecture of the system implemented to support the concepts described above.
The A-R-E consists in principle of two main components, namely the central authoring/reviewing/executing
environment and the resolver/anonymizer. In addition, there is a component that mainly works on the author’s
local computer (author’s local environment) , which is normally behind a firewall in his or her organisation. The
readers may want to access resources from outside the firewall, either at the editor’s location or at the author’s
location or in distinct locations such as other servers or clouds.

The central authoring/reviewing/executing environment is maintained at the publisher’s location. The core
component of this environment is the Information Workbench (IWB [7]), a generic platform for building Linked
Data applications, which has been developed by fluid Operations and is already productively used in fluid
Operations’ product portfolio. On demand, the user can also download a local copy of the Information Workbench,
to author the paper in his or her local environment prior to uploading the content. The IWB comes with a built-in
semantic database and provides full Semantic Wiki functionality, allowing users to author free-text sections,
interlink such sections, and establish connections to integrated semantic data. Terms can be used as linking points
within documents or document parts, and in turn these terms can be organized in graphs, supporting navigation and
discovery by following paths of terms through the graph. The IWB design follows a self-service application
development paradigm, i.e. it makes it easy to use and define widgets for searching, exploring, and processing data.
In addition, it includes predefined components for the analysis and visualization of data (e.g. in the form of charts or
dashboards) and supports the collaborative knowledge acquisition process, thus facilitating collaborative work on
publications. With its built-in semantic database, it also makes it easy to attach meta information to executable
papers, e.g. to categorize publications or to establish links between papers, authors, and conferences.

To build our A-R-E system on top of the Information Workbench we had to extend it by some novel features. Being
designed as a platform for self-service application development, though, the IWB comes with APIs that allow to
seamlessly integrate new modules and to couple it with other systems. Among the major changes was the support
for editorial workflows in the Information Workbench, which enabled us to implement the authoring-reviewing-
publishing process (cf. Figure 2 and the associated discussion). In addition, we had to integrate the IWB with the
resolver/anonymizer component and added some new widgets supporting the submission and reviewing process.
Most of the other tasks, like editing, metadata annotation, visualization support, or data export and import
functionality could be realized out-of-the-box with features already in place.

The author’s local environment refers to the machine residing at the author’s location or to the machine on which
the author stores his or her data or carries out the execution of his or her programs. The authors should be allowed to
manage the files (of diverse nature) associated with the paper. It enables the following, distributed, functionality :

1. Authors are enabled to create locally executable papers, if they so wish, and then export their data for
import into another instance of the Information Workbench.

2. Authors can provide (restricted) links to data that they do not want to upload, furthermore, they can provide
the possibility to locally execute runs of software in their local environment.

3. Authors can control multiple local environments, e.g. the cloud for big data experiments and their local
workstation for more iterative, less data-intensive tasks, like e.g. grouping results into plots.

369.indd 632 5/3/11 10:53:09 AM

Wolfgang Müller et al. / Procedia Computer Science 4 (2011) 627–636 633
 Author name / Procedia Computer Science 00 (2011) 000–000

4. The author must be enabled to share data with reviewers even before publication. Depending on the
organisation setting up a restricted environment on the institute’s server can incur severe hassle. Sharing
data on the author’s machine is often blocked by firewalls.

This means, that the author’s local environment comprises an installation of the Information Workbench, as well as
a tool that provides access to the data which are to remain outside the Information Workbench but should be shared
from the author’s machine. This component enables users to drag and drop data files into a shared area, to link files
to each other and to create URLs that make the object accessible from the outside. The reader then can explore
relations such as “resultfile A was generated from datafile B using matlab module M” and access the files in
question. Obviously, this information is also sufficient in order to run analyses using input the shared data files
yielding result files that can be shown to the reader/reviewer.

While the above caters for the authoring/reviewing/executing needs, we have not addressed the firewalls, yet. One
possibility of circumventing firewalls involves a proxy server component. Let us consider as a general case a server
A behind a firewall (that forbids incoming connections to A but allows outgoing connections from A), a proxy
server B outside the firewall and a client C (behind another firewall that forbids C to run a server but allows C to
build outgoing connections to servers) who wants to request data from A and is blocked by the firewall. As a
consequence, C cannot be served by A directly. How to resolve the challenges of this scenario can be illustrated by
using the interplay between the author’s local environment and the resolver/anonymizer.

The resolver/anonymizer component has the following functions:

1. help resolving A-R-E URLs that designate document regions.
2. shield reviewer data requests from the data provider, thus acting as an anonymizer.
3. provide some security for the data provider, as in case of need the owner of the anonymizer can trace who

accessed data via the anonymizer.
4. And it can also be useful as a proxy in a firewall piercing scenario.

For our example, we consider the hypothetical web locations author.org resolver.com, reviewer.org, and
thirdparty.org. Imagine a document at http://publisher.com/executablePapers/document.jsp linking to
http://thirdparty.org/paper.pdf, page 1, words 20 to 50, and to http://author.org/anotherPaper.pdf, page 4, words 41-
57. Furthermore consider that author.org is hidden behind a firewall, so it cannot be accessed directly. For use in the
A-R-E system one will wrap up these URLs such as:

 http://resolver.com/resolve?link=”http://author.org/anotherPaper.pdf”;page=4;words=”41-57”.

The following steps will be performed.
1. resolver.com receives the request. Before receiving the request, resolver.com has checked the requester’s

credentials and has made sure that the requester has the right to see the intended document. He has further
determined to which extent the user can see the documents.

2. The local component on author.org periodically contacts resolver.com. As result from its latest poll,
author.org learns that anotherPaper.pdf is requested

3. author.org sends anotherPaper.pdf to resolver.com.
4. resolver.com marks up the PDF of anotherPaper.pdf. In particular it highlights the words 41 through 57 on

page 4. According to the rights of the requesting user, the corresponding representation is handed out. For
example, we could imagine that some users are able to receive PDFs that allow cut-and-paste, others just
receive GIFs that enable reading but not further processing.

5. resolver.com forwards the enriched postscript to reviewer.org

Note that in this five-step process (i) the link to a pdf region has been resolved, (ii) reviewer.org got the requested
document, (iii) author.org did not learn who requested the document (iv) author.org learned the request by polling,
i.e. without listening to a socket, thus avoiding the most frequent firewall restrictions.

As can be seen in the example, the resolver is a RESTful web service.

369.indd 633 5/3/11 10:53:10 AM

634 Wolfgang Müller et al. / Procedia Computer Science 4 (2011) 627–636
 Author name / Procedia Computer Science 00 (2011) 000–000

4. A Walk Through A-R-E’s Features

Figure 4: Representing linked content in the Information Workbench

To demonstrate the main features of the A-R-E system we have defined a case study scenario in the area of
biochemical pathway analysis, where the HITS partner has experience in the processing of publications. However,
in the demo version of the system we include some examples in other areas in order to demonstrate the generality of
our solution and to present features that can be better/easier presented in different contexts. The prototype
contemplates all the phases of an executable paper’s life-cycle, namely the authoring of the paper, its submission,
the reviewing process, the authors’ revision, the publication, and finally the study (reading/interaction) of the paper
as well as extensions (follow-ups) of the paper.

To write the publication the author can use a text processing program of his or her choice (this is not part of the
system). The author can then import his or her draft of their paper into the system. The importing facility will
recognize the main sections of the paper and define these as the structure of the paper, this can of course can be
edited and modified by the author. The author can then use the A-R-E to explicitly reference related work (other
executable and non-executable papers) and use the Semantic Wiki facilities to find and eventually link from the
paper to external sources or to linked sources within the A-R-E system (See Figure 4).

369.indd 634 5/3/11 10:53:10 AM

Wolfgang Müller et al. / Procedia Computer Science 4 (2011) 627–636 635
 Author name / Procedia Computer Science 00 (2011) 000–000

Figure 5: Exploring and integrating existing life science data with the IWB

The A-R-E system already contains a wide pallet of life science databases from publicly available Linked Data
repositories. This data can be explored and integrated by a single click of a button (see Figure 5). In our demo, we
will show how the user can add new linked databases, such as the Systems Biology Ontology (SBO) [15] to make
references from the article to terms in the SBO. The demo will then show the systems support to reference to the
related data, regions in related data, program and application files which can be on the author’s local server or
imported into the publisher’s server. We will show how the author can also use applications offered by the system,
such as data analysis and visualization tools, and include the results into the paper. If desired, associated data can
also be loaded directly into the A-R-E’s internal database (or accessed dynamically from external Web sources), to
be visualized on demand using internal charting and reporting widgets.

Once a paper is ready for submission the paper can be “proof executed” to guarantee its integrity (all links are
functional and complete, references to external and system resources satisfy the necessary requirements, etc.). Once
submitted the author will not be able to modify the paper. The paper will be made visible and executable (but not
changeable) to the reviewers. Here the system will support the reviewing process by offering the search and
linking facilities offered to the authors as well as allowing the application of analysis tools and other types of
software to data supplied by the author or to other sets of paper. The reviewers can use the results of their analysis of
the paper to create their reviews, referencing to the results they obtained and to parts of the paper.

To demonstrate the functionalies of the anonymizing proxy we will show a case where the reviewer needs to
access data on the authors local environment. The author-reviewer cycle can be carried out several times (as many
as allowed or necessary) and, assuming success, the paper will be ready for publication at some point. The
management of the phases of the paper, once a paper has been registered in the system, is coordinated by the
publisher. Finally, the publication of the executable paper then brings the paper into an environment similar to that
of the reviewer. In this step, the publisher may limit the type of access to elements related to the paper, such as the
code of applications, which could have been open for revision by the reviewers (possibly on request) but may not be
accessible to the “general public”. The potential reader of the paper benefits from the executable paper in several
regards: improved search and exploration facilities may help to find relevant content and data more efficiently,
precise links to parts of other documents facilitate the understanding of the paper and its relation to related work,
executable parts of the paper could be reproduced and verified with only little effort, and data export functionality
may give direct access to the data associated with the paper, allowing the reader to integrate the data into his/her
own experiments. If desired, the publisher could choose to grant the author ongoing write access to the paper,
allowing him to correct mistakes and extend previous results once the paper has been published.

369.indd 635 5/3/11 10:53:10 AM

636 Wolfgang Müller et al. / Procedia Computer Science 4 (2011) 627–636
 Author name / Procedia Computer Science 00 (2011) 000–000

5. Conclusions

We have developed the A-R-E- environment that implements our concept of an executable paper. Our prototype is
based on a solid Semantic Wiki system augmented with a resolver/anonymizer component for the resolution of links
amongst (parts) of documents, and for the control of security/anonymity issues involved in the reviewing process
and in the sharing of data. Thirdly, there is a component (or multiple such components, where needed) at the
author’s location enabling simple through-firewall sharing, as well as performing execution of analysis on systems
controlled by the author.

Together, these components are an environment that facilitates reading and comprehension of papers by making it
easier to find what matters, to see how things fit together and to link them to outside sources of knowledge. We
enable blending of established semantic web techniques with extended links that enable linking into regions of
documents without creating anchors in these documents beforehand.

We have created a demonstrator to show the capabilities of the system, choosing as demo scenario the area of
biochemical pathways. We see several possible extensions, including better support for virtual machines in order to
execute papers in small-data scenarios at arbitrary locations and support for data streaming/multi-resolution
approaches for big-data scenarios.

Acknowledgements
The authors wish to thank Dr. Ulrike Wittig, Renate Kania for discussion and the SysMO-DB and SysMO-LAB
projects for ongoing fruitful collaboration.

References

1. T.K.Attwood, D.B.Kell, P. McDermott, J Marsh, S. R. Pettifer, D. Thorne: Calling International Rescue: knowledge lost in literature and data
landslide! Biochem. J. (2009) 424, 317–333 (Printed in Great Britain) doi:10.1042/BJ20091474
2. G. Kiczales, J. Lamping, A. Mehdhekar, C. Maeda, C. V. Lopes. J. Loingtier, J. Irwin: Aspect-Oriented Programming, Proceedings of the
European Conference on Object-Oriented Programming (ECOOP), Springer-Verlag LNCS 1241. June 1997

3. The ISA infrastructure http://isatab.sourceforge.net/isacreator.html

4. SysMO-DB RightField http://www.sysmo-db.org/rightfield

5. Anzo for Excel http://www.cambridgesemantics.com/products/anzo_for_excel

6. SysMO-DB project http://www.sysmo-db.org

7. The Information Workbench - Interacting with the Web of Data. P. Haase, A. Eberhart, S. Godelet, T. Mathäß, T. Tran, G. Ladwig, A.

Wagner. Technical Report, fluid Operation & AIFB, October 2009. http://iwb.fluidops.com/.

8. RDF Primer. W3C Rec., Feb 10, 2004. http://www.w3.org/TR/rdf-syntax/.

9. XML (Extensible Markup Language). W3C, http://www.w3.org/XML/.

10. XPath (XML Path Language). W3C Rec. Nov 16, 1999. http://www.w3.org/TR/xpath/.

11. Vít Novácek, Siegfried Handschuh: Biomedical Publication Knowledge Acquisition, Processing and Dissemination with CORAAL. OTM

Conferences (2) 2010: 1126-1144

12. Tudor Groza, Siegfried Handschuh, Georgeta Bordea: Towards automatic extraction of epistemic items from scientific publications. SAC

2010: 1341-1348

13. Vít Novácek, Tudor Groza, Siegfried Handschuh, Stefan Decker: CORAAL - Dive into publications, bathe in the knowledge. J. Web Sem.

8(2-3): 176-181 (2010)

14. M. Krötzsch, D. Vrandecic, M.Völkel: Semantic MediaWiki. International Semantic Web Conference 2006: 935-942

15. Le Novère N. (2006) Model storage, exchange and integration. BMC Neuroscience, 7(Suppl 1):S11. http://www.ebi.ac.uk/sbo/main/.

369.indd 636 5/3/11 10:53:10 AM

