
An Integrated Approach To Improving The Parallel
Application Development Process

Gregory R. Watson
IBM T.J. Watson Research Center

grw@us.ibm.com

Craig E Rasmussen
Los Alamos National Laboratory

crasmussen@lanl.gov

Beth R. Tibbitts
IBM T.J. Watson Research Center

tibbitts@us.ibm.com

Abstract—The development of parallel applications is be-
coming increasingly important to a broad range of industries.
Traditionally, parallel programming was a niche area that was
primarily exploited by scientists trying to model extremely com-
plicated physical phenomenon. It is becoming increasingly clear,
however, that continued hardware performance improvements
through clock scaling and feature-size reduction are simply not
going to be achievable for much longer. The hardware vendor’s
approach to addressing this issue is to employ parallelism
through multi-processor and multi-core technologies. While there
is little doubt that this approach produces scaling improvements,
there are still many significant hurdles to be overcome before
parallelism can be employed as a general replacement to more
traditional programming techniques. The Parallel Tools Platform
(PTP) Project was created in 2005 in an attempt to provide
developers with new tools aimed at addressing some of the
parallel development issues. Since then, the introduction of a new
generation of peta-scale and multi-core systems has highlighted
the need for such a platform. In this paper, we describe some
of the challenges facing parallel application developers, present
the current state of PTP, and provide a simple case study that
demonstrates how PTP can be used to locate a potential deadlock
situation in an MPI code.

I. INTRODUCTION

Parallel computers have existed in one form or another
almost since the first computers were available. The com-
plexity introduced by parallelism was evident from a very
early stage, and has been a major impediment to the adop-
tion of parallelism in main stream application development.
Many programming models and techniques have been used
to improve the simplicity and reliability of parallel programs.
Dozens of new languages and language features were intro-
duced, however very few are still widely used. In the 1990’s,
the Message Passing Interface (MPI) standardization effort [1]
was seen as a major step forward in parallel programming
models. The predominant programming models still in use are
asynchronous threads and MPI, although the use of partitioned
global address space (PGAS) languages, such as Unified
Parallel C (UPC) [2], appear to be increasing in popularity.
Although the PGAS languages simplify the programmer’s
task to some extent, the potential for deadlocks and other
synchronization issues still remain a significant challenge.

The first integrated development environment (IDE) was
introduced when computer input devices became sophisticated
enough to support the seamless integration of development
activities. Due to performance and usability issues, however,
there was often programmer resistance to the wholesale adop-
tion of IDEs. The quality and productivity improvements
achieved using IDEs has been well established [3], [4], [5],
[6], and combined with improvements to the IDEs them-
selves, they are now the predominant environment for software

development. Although a considerable number of IDEs are
available today, many are limited to a single operating system
(e.g. KDevelop, Visual Studio), or are proprietary (e.g. Visual
Studio, Xcode, Sun Studio). Eclipse [7] is one of the few truly
cross-platform IDEs that has been designed for extensibility.
Interestingly, although IDEs have been used in the past to
aid parallel application development [8], [9], [10], [11], none
of these are still available today. Few developers working on
parallel scientific codes use IDEs at all.

The Eclipse Parallel Tools Platform (PTP) was launched
in 2005 in an attempt to address this situation. At this time,
commodity clusters had largely replaced custom proprietary
hardware for high performance computing (HPC), however
the predominant parallel application development environment
was still command-line tools. At the same time, the move
towards multi-core architectures for conventional applications
was outpacing the ability of existing IDEs to provide the tools
necessary to exploit the new technology. As the HPC and
multi-core architectures begin to converge, the need for new
programming models and more sophisticated tools now has a
greater urgency.

PTP builds on the exemplary tools available in the Eclipse
platform and the Eclipse C/C++ Development Tools (CDT)
to provide support for C, C++, UPC, Fortran, and in the
future other parallel languages. It is also a platform, so that
while it provides a range of core services and tools, it is also
designed to be extended to support new tools, architectures,
and programming models. In addition to Eclipse’s advanced
editing, build, and integrated source code management func-
tionality, PTP provides four additional features: advanced error
checking and static analysis tools that assist the programmer to
develop parallel applications; runtime monitoring and control
of parallel jobs; debugging support for multi-process applica-
tions; and an external tools framework for the integration of
dynamic analysis tools, such as tools for performance analysis
and optimization. In the first of these, PTP provides a number
of tools that are primarily aimed at the MPI and OpenMP [12]
programmer, and that reduce much of the tedious and error-
prone nature of these programming models. Runtime mon-
itoring and control of parallel jobs abstracts the interaction
between the developer and the parallel system, so that the
developer is able to seamlessly launch and control applications
without needing to focus on specific architecture details. The
parallel debugging support provides a range of features to
support debugging parallel applications, but that can also be
extended to encompass the new debugging paradigms that will
be required on peta-scale and multi-core systems. The external
tools framework allows existing performance and other kinds
of dynamic analysis tools to be easily integrated into the



Eclipse framework so they are accessible to the developer.
Finally, recent work has added remote development capability
to PTP. The Remote Development Tools (RDT) are a series
of enhancements to CDT that allow projects to be physically
located, built, and executed on a remote system, while Eclipse
runs on the developer’s local workstation.

In the following sections, we will outline some of the
challenges faced by developers, describe some of the main
features of PTP that are specifically designed to aid parallel
application development, provide a simple case study that
shows how a potential deadlock situation was discovered in an
MPI code, and discuss future directions for the PTP project.

II. CHALLENGES

With the growing popularity of multi-core systems as a
means of improving application performance, parallel pro-
gramming is set to enter the main stream. The challenge
posed by these systems is twofold: existing applications will
need to be modified to make use of the new architectures if
any performance improvements are to be obtained; and new
programming models and languages will be required to man-
age the extra complexity that parallelism introduces. Although
explicit threading has been used effectively as the predominant
programming model for shared memory architectures, it is
neither easy to program correctly, nor conducive to retrofitting
applications in order to utilize the new architectures. How ex-
isting applications will benefit from the new age of parallelism
without huge investments in re-engineering is still very much
an unanswered question.

In scientific computing, explicit parallelism has been em-
ployed with varying degrees of success for many years. Un-
fortunately, the homogeneous architectures that have facilitated
these programming models have reached a practical limit
in the search for peta-scale performance and beyond. One
approach to addressing this is to offload large portions of the
computation load onto some form of accelerated hardware.
The result is a very heterogeneous environment that intro-
duces significant complexity into the application development
process. In an attempt to address these problems, a large
scale effort is underway to develop new programming models
and languages that will reduce the complex and error-prone
nature of parallel application development, and to develop
new tools that will aid both legacy and new applications to
extract the maximum performance from the new architectures.
Many of the current issues encumbering scientific application
developers have been discussed elsewhere [13], and we will
consider the implications of some of these here. However, few
major scientific applications have yet to face the challenges
that the next generation of peta-scale machines will introduce.

In many computing environments it is already unusual
for computational resources to be available locally, and de-
velopment processes are becoming complex enough to re-
quire significant resources in themselves (e.g. building large
applications can take many hours). In these situations, the
ability to develop applications remotely will be an important
requirement, as will launching and debugging applications
on the remote systems. Further, as many of these systems
employ batch schedulers, the developer must be able to easily
submit jobs for execution, and be notified when the job has
completed execution. Providing a development environment

that is flexible enough to deal with the many possible sys-
tem configurations, but without burdening the developer with
additional complexity, is a major challenge.

Effectively debugging applications is an area that still
presents significant problems to the developer. The current
generation of parallel debuggers have simply extended the
sequential debugging paradigm to multiple processes (or
threads), but do not address problems such as algorithmic
debugging, nor how to deal with errors resulting from con-
currency issues, scaling, or other non-deterministic failures.
In addition, the next generation of peta-scale machines are
expecting in the order of one million executing tasks, and ex-
isting threaded applications, which already exhibit thousands
of threads, are likely to also increase in size significantly.
Dealing with large numbers of objects (threads, processes,
etc.) raises many scalability issues with the debugger itself,
both in the ability of the user interface to display and manage
the objects, and in the communication services that are used
between remote systems and the local environment.

As system complexity increases, the process of building
an application is likely to become more complicated. Cur-
rently, applications are built with a (albeit intricate) linear
sequence of compile and link steps. In the future, however,
it is possible that many more activities will be required to
produce an optimized application executable. For example,
multiple programming models may need to be combined (as
is already required for IBM’s Cell Broadband Engine), or
dynamic performance information gathered at runtime may
be required to augment the static analysis performed by the
compiler. Tools designed for building sequential applications
on SMP architectures are unlikely to suffice for this purpose.

The DARPA HPCS Language Project [14] is driving the
development of programming models and languages for sci-
entific computing, and a similar evolution will also likely
to be necessary for multi-core systems. However, a huge
amount of legacy language code development will continue
for the foreseeable future, and new tools will be essential if
these codes are to adapt to the new architectures. Techniques
such as the static analysis of programs and refactoring will
play a vital part in making this happen. The infrastructure
required for these tasks is significantly more complex than
anything required by development environments before (apart
from compiler internals), so a large engineering effort will be
required to build the appropriate frameworks and tools.

There are many other challenges that still prove to be signif-
icant obstacles to the effective and productive development on
scientific codes, such as the difficulties in porting applications
to new hardware, simplifying the use of defect tracking tools as
part of the development cycle, providing comprehensive unit
and regression testing, managing application data requirements
and visualization, and verification and validation. Many of
these are also likely to impact on multi-core development
practices.

The Parallel Tools Platform project’s aim of building on
the unique capabilities of Eclipse in order to address as many
of these challenges as possible is an ambitious one. While
much work still remains to be done, we are confident that the
functionality described here will demonstrate that PTP is well
on the way to meeting this goal.



III. INTEGRATED TOOL PLATFORM

Eclipse is an open development platform that provides
an extensible framework for integrating tools to support the
software development lifecycle. It is an open source, portable,
flexible, plug-in management system that forms the core of
a fully featured integrated development environment. The
Eclipse SDK adds a number of plug-ins that provide the wide
range of software development tools, services, and documen-
tation expected in an IDE. These include integrated features
such as syntax aware editors with content assist and code
formatting, context-sensitive help, language-specific searching
and navigation, code refactoring, managed and un-managed
build systems, application launch services, local and remote
multi-thread debugging, version control, and defect tracking.
Eclipse also provides multi-language support, including C,
C++, Fortran, UPC, and a range of scripting languages, such as
Python. As these features have been discussed elsewhere [15],
we will not consider them in detail here.

The Parallel Tools Platform (PTP) is an extension of the
Eclipse platform that provides features specifically designed
to aid parallel application development. It currently focusses
three main areas: the tools and infrastructure necessary for
advanced error checking and analysis of parallel applications;
a runtime environment that allows developers greater trans-
parency into the systems on which they are developing appli-
cations; and a parallel debugger that will allow developers the
ability to more easily locate errors and anomalies in program
behavior. In the following sections we will describe each of
these three aspects of PTP in more detail. The underlying
architecture of PTP has already been described in [16]. PTP
also provides a framework for integrating performance tools
into Eclipse, but discussion of this will be the subject for a
future paper.

A. Static Analysis Tools
The PTP analysis tools are aimed at providing Eclipse with

an additional feature set that is designed to aid developers
writing parallel applications. These tools are currently targeted
at the MPI and OpenMP programming models, but we fully
expect them to be extended to other models or languages as
the need arises.

1) Advanced Help and Content Assist: Eclipse includes
an integrated help system that provides a help browser and
context sensitive help that can be accessed directly from the
user’s editor session. PTP augments this help system with
MPI- and OpenMP-specific information in order to improve
the developer experience when using these programming mod-
els. Reference information about the MPI and OpenMP API,
including arguments, return type, and a functional description,
are available via the help browser or by simply placing the
cursor over an API in the editor view to activate hover help.
The Eclipse content assist has also been augmented to enable
auto completion of APIs and arguments while typing.

2) Artifact Analysis: This analysis tool allows the developer
to more easily work with MPI and OpenMP codes by provid-
ing a higher level abstraction of the APIs. Like the outline
view1, the artifact view shows a list of all MPI function calls,

1The Eclipse outline view provides an outline of the program showing its
structural elements.

Fig. 1. View showing MPI artifacts discovered in the source code.

Fig. 2. View showing barrier matching sets and barrier errors that were
discovered using static analysis.

OpenMP pragmas, and other artifacts in the program. Figure 1
shows the MPI artifact view. Navigation to the source code
location of these artifacts is achieved by clicking on the artifact
in the view, or by using icons in the navigation bar of the
currently open editor.

In addition to augmented views, static analysis also provides
more advanced error checking features than are typically
available in Eclipse. These are the types of checks that could
be made by compilers, but by providing an integrated tool
it is possible to provide error reporting much earlier in the
development cycle. Currently, checks for many of the known
OpenMP programming errors are provided.

3) Barrier Analysis: The barrier analysis tool was the first
example of a static analysis tool provided by PTP, and can
be used to detect potential deadlocks in MPI applications.
The tool does this by identifying the location of all MPI
barrier statements2 in the application (which may be scattered
throughout the source code), and constructs barrier matching
sets. Each set comprises all the barrier statements that could
execute in parallel. Using this information, it is possible to
determine if there are any barrier statements that do not have
a matching barrier, and flag these as potential deadlock errors.
The technique used to compute the barrier sets is described in
detail in [17]. The tool also provides a barrier view to enable
the easy navigation to barrier statements in the source code.
Figure 2 shows an example of the barrier view containing a
list of barrier sets.

4) Concurrency Analysis: Like the barrier analysis tool,
the concurrency analysis tool was provided to detect potential
concurrency problems, but for OpenMP (threaded) applica-
tions. Details on the analysis technique used by the tool are
provided in [18]. The concurrency analysis tool allows the
developer to choose a particular expression, and then evaluate
and identify all expressions that could execute concurrently
with the selected expression. Since it is important to ensure
that only expected expressions execute in parallel, this tool
can be used to detect potential race and deadlock conditions.

2An MPI barrier causes each process to wait until all processes have reached
a barrier. It is used to synchronize all processes.



Fig. 3. View showing the status of the first 220 nodes of a 1024 node cluster.

B. Runtime Tools
One of the difficulties facing the parallel application devel-

oper is the lack of transparency about the behavior and status
of applications and the machines that they run on. Further,
many parallel systems have a more complex interface than
POSIX-style command-line execution, and because they are
typically a scarce resource, many employ a batch scheduler
to manage access to the computational resources. Not only
must the developer spend time learning the interfaces and
integrating these with their development processes, but each
iteration of the development cycle can be encumbered with
unnecessary and tedious activities.

To facilitate a more productive development environment,
PTP provides a number of abstractions that simplify the
interaction with target systems. The first of these is a runtime
model3 that provides an abstract representation of the parallel
system that the developer is interacting with. This model forms
the core of a model-view-controller design pattern. Informa-
tion about the parallel system, and applications running on
the system, is fed into the model to update the attributes
of model elements. PTP provides a number of views into
this model that enable the developer to monitor the status
of the system and the applications as they are executing.
The advantage of this approach is that new views can be
easily added to expose different features of the underlying
system (e.g. network topology), or to display information in a
completely different way (e.g. to scalably display racks of a
large parallel system).

The second abstraction that PTP provides is the notion
of a resource manager, which represents any subsystem that
manages resources on a target system. Examples of possible
resource managers include: MPI runtime systems; job sched-
ulers; virtual machines; and simulators. PTP allows multiple
resource managers to be configured simultaneously, and places
no restrictions on the location of the resources, so they can
be local or remote to the Eclipse environment. Internally, a
resource manager is just another part of the runtime model
hierarchy, so the model views can be used to provide a
display of the status of any resource managers that have been
configured. In addition to monitoring activities, the resource
manager is also responsible for submiting jobs for execution,
and initiating debug sessions. The protocol used to interact
with remote resource managers is user-selectable during the
configuration process. This includes allowing communication

3Not to be confused with a programming model. The runtime model only
provides a model of the parallel machine for monitoring and control purposes

Fig. 4. View showing a list of jobs (red - completed, green - running).

to be tunneled over a secure ssh connection to address the
security requirements of many installations. Figure 3 shows
one type of view for monitoring a large cluster.

Launching of parallel applications is managed through the
normal Eclipse launch configuration mechanism. PTP adds a
parallel application launch type that allows the developer to
select the resource manager that will be used to control job
submission, and supply resource manager specific attributes
that specify resource constraints on the job. Once a job has
been submitted, the runtime views allow the user to monitor
progress of the job on the target system. Figure 4 shows an
example of a view for monitoring job status.

C. Debug Tools
A key aspect of any development process is the ability to

effectively locate and correct program errors. Debugging has
traditionally been a difficult area for parallel application devel-
opers, since traditional debugging methodologies only apply
when the number of parallel tasks remains small, and the very
act of debugging can perturb the application enough to make
identifying temporal issues very difficult. Very few parallel
debuggers currently exist, so developers have, until recently,
only had a relatively few options: purchase a commercial
parallel debugger, attempt to use a sequential debugger (such
as gdb) or a debugger wrapper (such as mpigdb), or use
debug tracing statements (printf or equivalent).

As only a small number of commercial parallel debuggers
exist4, there is little competition to drive innovation and new
functionality, and with only a small potential market, this
can be an expensive debug solution. Also, these debuggers
suffer from scalability problems when debugging applications
larger than a few thousand processes. The gdb or mpigdb
options, while cheaper, also suffer from scalability and usabil-
ity issues. Neither the commercial nor open source solutions
are integrated with a complete development environment, so
launching a debug session can be a challenging exercise.
Using tracing, while neither scalable nor powerful, is at least
ubiquitous and easy to use. As a result, this has become the
defacto debugging paradigm for parallel programming in many
situations.

PTP attempts to overcome these limitations, by providing an
integrated parallel debugger that can be activated whenever the
developer requires detailed debugging information about the

4At the time of writing only three: TotalView, DDT and the Intel Debugger
(IDB).



Fig. 5. Parallel debug view showing a 32 process job being debugged.

application under development. In addition to normal debug-
ging functionality, such as setting breakpoints, single stepping,
viewing and altering variables, etc., the debugger also gives
the developer the ability to control and manipulate arbitrary
sets of processes associated with a parallel application as it
is executing. By default, the debugger establishes a set of all
processes in the application run, and commands such as setting
a breakpoint, single stepping, or resuming execution can be
applied to this set of processes. The set can be subdivided into
an arbitrary number of subsets (including individual processes)
that allow finer control of application execution. Figure 5
shows the parallel debug view which allows manipulation of
sets of processes.

Debugger scalability is always an issue, and the PTP debug-
ger is no exception. However, the debugger infrastructure has
been designed to scale, and so far has proved effective up to the
same application sizes that can be handled by the commercial
debuggers. In addition, because the PTP debugger is an open
architecture, we hope that it will be used as a platform to
develop new debugging paradigms that will be necessary to
deal with applications that comprise hundreds of thousands or
millions of parallel tasks.

D. External Tools Framework
PTP recognizes the fact that there are already many pow-

erful tools available for assisting developers to maximize
the performance and productivity of their applications. Most
of these tools are stand-alone or command-line based, and
are typically quite complicated to use, but the benefits of
these tools to the development process can be significant.
Although it is possible to integrate external tools into the
Eclipse framework, the cost and complexity of doing so can
be high, and many tool developers do not see the benefits
that integration with Eclipse can bring. To better facilitate the
integration of such tools, the PTP External Tools Framework
(ETF) has been developed to reduce the burden on the tool
developer and simplify the process of integrating the tool with
Eclipse.

The ETF defines five integration points that can be specified
using only an XML description file. These integration points
are:

• Instrumentation. This includes the automatic and selec-
tive instrumentation of the application for data collection.

• Build. These define activies that must take place when the
application is built, and may be transparent to the user.

• Launch. This defines how the instrumented application is
launched.

• Data Management. This defines how tool generated data
is managed and accessed.

• Visualization. This defines how tools can provide their
own browser or GUI in order to visualize or analyze data,
or make use of Eclipse views directly.

By specifying corresponding actions for each integration
point, the tool developer can easily incorporate their tool
into the Eclipse development workflow in a manner that is
transparent to the developer.

E. Remote Development Tools
Although PTP supports remote application monitoring, ex-

ecution, and debugging, until recently the application source
code and build environment was restricted to the local work-
station on which Eclipse was running. However, with the
recent addition of the Remote Development Tools (RDT) to
PTP, all aspects of an application can be managed remotely.
Although still in an early development stage, RDT promises
to significantly enhance the development of complex parallel
and scientific applications. It does this by allowing developers
to continue to utilize the existing development platforms they
are currently using, but at the same time to take advantage of
the features provided by PTP without requiring any changes
to the application build environment.

RDT introduces the notion of a remote project, which
appears in the Eclipse workspace as if it was local to the de-
veloper’s workstation, but the application actually resides on a
remote machine. In order to operate on the remote application,
RDT defines a number of services which can be independently
configured to provide selective remote operations. The three
primary services that are currently supported by RDT are:

• Remote File Service. This service is used to access source
files that reside on the remote system to support local
editing and file copy operations.

• Remote Indexing Service. This service is used to provide
parsing and index generation on the remote system in
order to avoid the cost of accessing every source file
across the network.

• Remote Build Service. This services enables the appli-
cation to be built remotely by executing an aribitrary
build command on the remote system. Currently only
projects built in this way can be used with RDT, the CDT
“managed projects” are not supported in this release.

When used in conjunction with PTP’s remote execution and
debug facilities, RDT allows the developer to transparently
undertake the full range of development activities on projects
the completely reside on a remote system.

IV. A SIMPLE CASE STUDY

In the following section, we will present a simple case study
on using PTP for developing an MPI application. This will
include describing the steps necessary to import and configure
an existing MPI application, locate a potential deadlock situa-
tion, then launch the application under debugger control. The
code we chose for this example is the freely available discrete
Fourier transform code, FFTW5, containing about 75,000 lines
of source code and nearly 500 source files.

5Available from http://www.fftw.org



A. Importing
Eclipse offers a range of methods for importing an existing

application so that it can be developed using PTP. These
include: making a copy of the code into the workspace; linking
to an external project; or checking out the code from a source
code repository. The particular method chosen will depend on
the developers environment. In this case, we didn’t have access
to a source code repository, and downloaded the code from
the web as a gzipped tar file. After unpacking to source into
a temporary directory, the code was imported into Eclipse. As
FFTW already provides its own build system, we first created
an empty unmanaged type of C Project, known as a Makefile
project. Right-mouse clicking on this project provides access
to the Import. . . menu. We then selected the File System
import wizard and selected the directory that contained the
unpacked source code. At this point the files were copied into
the workspace ready for use.

Eclipse is scalable enough to support very large projects
(thousands of files, millions of lines of code). Activities such
as indexing the source code (used for advanced searching,
content assist, type and call hierarchy views) are potentially
long running, so automatically take place in the background
without affecting the developer.

B. Configuring
Like many open source projects, the FFTW code uses the

autoconf package to configure the build for a particu-
lar architecture. Eclipse doesn’t provide explicit support for
autoconf, but will still work with this type of project.
In order to create the Makefile required to build the
code, the configure script must first be run. This can
be done either from the command line (by changing to the
project directory and typing ./configure) or from within
Eclipse (by creating an External Tools launch configuration
to run the configure script.) In order to build FFTW with
MPI support, the --enable-mpi option had to be passed
to the configure script. We also prefixed the command
with CFLAGS=-g to ensure that debugging information was
included in the executable.

Once the appropriate Makefiles have been created, the
only remaining action required to complete the configuration
is to create a make target in order to run the build command.
This is achieved by right-mouse clicking on the ‘fftw’ project
in the Make Targets view and selecting Add Make Target
from the context menu. We named the target ‘build fftw’ and
left the Make Target field blank in order to run the make
command with no arguments.

C. Analyzing
The barrier analysis tool is invoked on the project using a

special Parallel Analysis menu on the Eclipse toolbar6. The
analysis will scan all source code in the project and compute
the barrier sets. Markers indicating the location of potential
errors will be placed on corresponding source files and when
the source file is opened, at the source line location in the
file. The developer can then use this information to correct a
potential deadlock situation.

6The toolbar provides quick access to commonly used functions via a series
of icons at the top of the Eclipse window.

In the case of the FFTW code, we had no idea if there
were any MPI barriers used in the code (although it seemed
likely) or where they were located, so we simply ran the barrier
analysis on all the source files. This was done by selecting
the top-level directory, and then the MPI Barrier Analysis
command from the Parallel Analysis menu. The result of this
analysis was the discovery of six barrier statements in a single
source file, and one potential deadlock situation. Figure 6
shows the source code annotated with makers indicating the
location of the barrier statements and the potential error.

Fig. 6. Annotated source code showing the location of barrier statements
and a potential barrier deadlock.

While this potential deadlock was only evident in a test
harness, it nevertheless demonstrates the value of this kind
of analysis, and also the difficulty in locating such errors. In
this case, the error was not immediately obvious, even after
inspecting the code. None of the variables used in evaluat-
ing the if statement at line 103 (verbose, local_ny,
or nx) appear to be dependent on the rank of the indi-
vidual processes, so it was not obvious why this might
be an error. However, a more detailed inspection of the
code revealed that the value of local_ny is computed in
transpose_mpi_get_local_size in a different source
file. This function calculates the size of the local segment of
the array which varies depending on the process rank. The
result is that it may be possible for some processes to execute
the body of the if statement, while others do not, and so miss
the barrier statement at line 117.

D. Building
Eclipse projects can be configured to automatically build

each time an editor change is saved, or by manually invoking
the build command from an Eclipse menu. While the build
is running, the developer is able to continue to modify the
source, perform analysis, or undertake other activities that
are not dependent on the build completing. Build progress is
displayed in a special progress view, that provides an estimate
of the percentage completed. Detailed output from the build
is available in the console view. If any errors are detected by
the compiler or linker steps, the build will terminate, and a
list of the errors will be displayed in the problems view. Error
markers will also be placed on source files and displayed in
the editor.

In order to build the FFTW project, it was necessary to in-
voke the make target that we created previously. This was done
by switching to the Make Targets view and double-clicking
on the ‘build fftw’ target. The build completed successfully
with only one error, the previously discovered barrier error,
still evident.



E. Launching
Once the build has completed, the developer must cre-

ate a launch configuration to run the application. A single
configuration is used for both running and debugging, and
specifies the attributes needed to launch the application, such
as the resource manager, executable name, command line
arguments, environment variables, etc. These attributes are
saved in the configuration, so they only need to be specified
once. After creating the configuration, the application can be
run or debugged by clicking a single button on the toolbar.

For FFTW, we created a new launch configuration to run the
test_transpose_mpi program with arguments ‘100 90
10’ corresponding to a 100x90 matrix containing 10 elements.
We had previously configured a resource manager to control
a remote Linux machine, and used this to start a four process
job from our workstation. The job completed successfully, and
output was visible from the process with MPI rank 0.

F. Debugging
In order to debug the application, no further configuration

was necessary. A single button click is all that is required
to invoke the debugger, and Eclipse automatically switches
to display views for controlling the application (e.g., single
stepping), examining stack frame location, viewing variables,
etc. Breakpoints can be set directly in the source code editor
view by clicking on the left edge of the view. Once the debug
session is completed, the developer can switch back to the
runtime and editor views with a single click.

We again launched the same four process job, but this time
under the control of the debugger. Placing a breakpoint at line
103 allowed us to observe that the value of local_ny for
each process was 23, 23, 23, and 21 respectively, showing that
the values do vary based on the process rank. Although we
did not attempt to identify the specific cases where a deadlock
would occur, we were able to verify that the deadlock situation
was a feasible one.

V. FUTURE WORK

There are many aspects of parallel application development
for both peta-scale and the emerging multi-core systems
that still remain major challenges. As mentioned before, the
current programming models are unlikely to be adequate for
applications designed to run on peta-scale systems, and much
more powerful tools will be required to optimize performance
for the next generation of heterogeneous hardware. If multi-
core systems are going to become the performance panacea,
then application developers will need programming models
and languages that are as simple and easy to understand as
those being used today. There are also many issues relating to
the interaction between developers and the systems for which
they are developing parallel applications. Eclipse and PTP are
now well placed to begin addressing many of these challenges.
In the following sections, we briefly examine a few key areas
where future development of PTP appears promising.

A. Analysis Tools
The barrier and concurrency analysis tools provided by PTP

were chosen to address some immediately obvious sources
of errors, however there is significant scope for expanding
the types of analysis that can be undertaken. There are also

a number of tools already available that provide analysis
information derived from running the application, such as trace
and profile information, and that could be used to augment
the static analysis to provide greater insights into program
operation. In addition, there are opportunities to better utilize
compiler generated information to assist in the application
development process. One such tool being actively developed
will use compiler generated parallelization analysis to display
the analysis results to the user, and possibly aid the developer
in parallelizing selected code regions.

B. Performance Tools
PTP provides an external tools framework for integrating

performance tools with Eclipse, however this is only a small
part of the functionality required to support integrated per-
formance analysis and optimization of parallel applications.
Ideally, the developer should be able to invoke a performance
analysis tool as easily as launching or debugging the applica-
tion, have the data automatically collected and analyzed, and
the results used to annotate the source code. The Tuning and
Analysis Utilities (TAU) have already been integrated with
PTP, and a number of other performance tools groups are also
exploring Eclipse as a delivery platform. However, there is still
much work to do to ensure that performance tools can be easily
and effectively used as part of the development workflow.

C. Multi-core Tools
The current PTP tool set has been targeted primarily at

distributed memory architectures and programming models
(with the exception of OpenMP), however there is a growing
requirement for tools to ease the transition from existing
architectures to multi-core systems. At least three kinds of
tools could benefit these applications: tools to aid in paral-
lelizing sequential applications in order to make better use
of the increased compute resources; performance analysis
tools specifically targeting applications running on multi-core
systems; and debugging tools that better manage the extra
complexity introduced by multi-core architectures.

D. Languages and Programming Models
A variety of efforts are underway to develop new languages

and programming models for parallel computing. In addition
to the DARPA HPCS Language Project, there are also projects
aimed at enhancing existing languages, such as UPC, Co-
Array Fortran (CAF) [19], and Titanium [20], that add new
functionality to better support parallel programming. New pro-
gramming models, such as Asynchronous Partitioned Global
Address Space (APGAS), on which IBM’s X10 language [21]
is based, are being developed. There is work under way to add
support for PGAS-style languages and programming models
to PTP, but there is still much development required to add
support for the languages themselves.

E. Refactoring
Refactoring, or source-to-source transformations that pre-

serve behavior, is emerging as a significant solution to many
issues facing parallel programmers. This ranges from enabling
legacy codes to take advantage of new language features
(e.g. refactoring Fortran 77 codes to add Fortran 95 features),
adding data parallelism (e.g. adding UPC directives to C code),
to performance optimizations through source transformations



(e.g. cache optimization). Enabling refactoring requires access
to compiler front-end infrastructure, as well as a framework
for specifying refactoring algorithms. Eclipse provides both
of these, but significant development is still required to im-
plement the kinds of refactorings that would be beneficial to
parallel application developers.

F. Debugging Methodologies
The existing interactive debugging methodology for parallel

applications is not significantly different from that used for
sequential applications. However, as the size of applications
increases to peta-scale and beyond, it is not clear that this
methodology will remain effective. In particular, if appli-
cations comprise millions of concurrently executing tasks,
just identifying which tasks are the source of the errors is
likely to become a highly challenging activity. The rich user
interface and extensibility of Eclipse provides an exciting
opportunity to investigate new techniques for analyzing, lo-
cating, and correcting errors in parallel programs. In addition,
the integrated nature of PTP now provides opportunities to
combine performance analysis and debugging tools into a
single performance debugging paradigm.

VI. CONCLUSION

The quest for greater hardware performance is driving a
significant change in the application development landscape.
Both the scientific and mainstream computing communities
are facing the challenge of developing parallel applications
that are able to extract maximum performance from the new
hardware. There is no doubt that new tools, languages, and
programming models will be needed to assist the developer to
reach this goal.

Although a number of integrated parallel tool environments
have been developed in the past, none are still in wide use
today. It’s possible to speculate on the reasons for this, but
one factor is clear: none have been based on a framework
that enjoys the enormous popularity and the advanced features
of the Eclipse platform. In addition to an open, portable
and robust platform, Eclipse also provides an extensive array
of advanced tooling that can be used by tool developers to
create an integrated solution to a wide array of programming
activities. The Parallel Tools Platform builds on this solid
foundation, and provides an additional framework for develop-
ing and integrating tools for developing parallel applications.
Currently, PTP provides a range of tools that provide advanced
error checking, static analysis, runtime monitoring and control,
and debugging services.

In addition to the existing tools, there are a number of efforts
underway to improve the range of tools and functionality that
PTP provides. This includes extending the analysis support
to encompass dynamic analysis, and better integration for
performance analysis tools. There are also active projects to
enhance the ability of Eclipse to work in distributed devel-
opment environments, and to improve the refactoring support
that is available for existing programming languages.

PTP is still a very young project, and there are many op-
portunities for improving the capabilities to suit the advances
in computing technology that will be introduced over the
next few years. The integrated nature of the platform also
offers scope for developing new tools, that may have not been

possible in the past, to deal with programming challenges
that will be faced by both the peta-scale and many-core
communities.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the efforts of many contributers

without whom the Parallel Tools Platform would not exist. This includes the
Eclipse Foundation, Los Alamos National Laboratory, Monash University,
IBM Corporation, University of Oregon, Oak Ridge National Laboratory, and
Technische Universität München, along with the many individuals who have
shared their ideas and suggestions.

This material is partly based upon work supported by the Defense Ad-
vanced Research Projects Agency under its Agreement No. HR0011-07-9-
0002.

REFERENCES

[1] “MPI: A Message Passing Interface Standard,” http://www.mpi-
forum.org, June 1995.

[2] “UPC Language Specification v1.2,” 2005.
[3] A. Frazer, “CASE and its Contribution to Quality,” The Institution of

Electrical Engineers, London, 1993.
[4] M. J. Granger and R. A. Pick, “Computer-aided Software Engineering’s

Impact on the Software Development Process: An Experiment,” in
Proceedings of the 24th Hawaii International Conference on System
Sciences, January 1991, pp. 28–35.

[5] P. H. Luckey and R. M. Pittman, “Improving Software Quality Utilizing
an Integrated CASE Environment,” in Proceedings of the IEEE National
Aerospace and Electronics Conference, May 1991, pp. 665–671.

[6] R. J. Norman and J. F. N. Jr., “Integrated Development Environments:
Technological and Behavioral Productivity Perceptions,” in Proceedings
of the Annual Hawaii International Conference on System Sciences,
January 1989, pp. 996–1003.

[7] “Eclipse - An Open Development Platform,” http://www.eclipse.org.
[8] B. Q. Brode and C. R. Warber, “DEEP: A Development Environment

For Parallel Programs,” in Proceedings of the International Parallel
Processing Symposium, 1998, pp. 588–593.

[9] D. Callahan, K. Cooper, R. Hood, K. Kennedy, and L. Torczon,
“ParaScope: A Parallel Programming Environment,” in Proceedings of
the First International Conference on Supercomputing, Athens, Greece,
June 1987.

[10] J. Cownie, A. Dunlop, S. Hellberg, A. J. G. Hey, and D. Pritchard,
“Portable Parallel Programming Environments - The ESPRIT PPPE
Project,” Massively Parallel Processing Applications and Development,
Netherlands, June 1994.

[11] P. Kacsuk, J. C. Cunha, G. Dózsa, J. L. co, and et. al., “A Graphical De-
velopment and Debugging Environment for Parallel Programs,” Parallel
Computing, vol. 22(13), pp. 1747–1770, February 1997.

[12] R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, and J. McDon-
ald, “Parallel Programming in OpenMP,” Morgan Kaufmann, 2000.

[13] L. Hockstein and V. R. Basili, “The ASC-Alliance Projects: A Case
Study of Large-Scale Parallel Scientific Code Development,” IEEE
Computer, vol. 41(3), pp. 50–58, March 2008.

[14] E. Lusk and K. Yelick, “Languages for High-Productivity Computing:
The DARPA HPCS Language Project,” Parallel Processing Letters, vol.
17(1), pp. 89–102, 2007.

[15] “Eclipse Documentation - Latest Release,”
http://help.eclipse.org/help33/index.jsp, July 2007.

[16] G. R. Watson, “A Model Based Framework for the Integration of Parallel
Tools,” in Proceedings of the 2006 IEEE International Conference on
Cluster Computing, September 2006.

[17] Y. Zhang and E. Duesterwald, “Barrier matching for programs with Tex-
tually Unaligned Barriers,” in Proceedings of the 12th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming, 2007,
pp. 194–204.

[18] Y. Lin, “Static Non-concurrency Analysis of OpenMP Programs,” in
Proceedings of the First International Workshop on OpenMP (IWOMP
2005), June 2005.

[19] R. Numrich and J. Reid, “Co-Array Fortran For Parallel Programming,”
ACM Fortran Forum, vol. 17(2), pp. 1–31, 1998.

[20] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krish-
namurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and A. Aiken,
“Titanium: A High-Performance Java Dialect,” Concurrency: Practice
and Experience, vol. 10, pp. 825–836, 1998.

[21] “The X10 Programming Language,” http://x10-lang.org.


