arXiv:1008.4571v1l [cs.DC] 26 Aug 2010

Simulation Factory: Taming Application
Configuration and Workflow on High-End
Resources

Michael W. Thomas
Center for Computation & Technology/
Department of Computer Science
Louisiana State University

Abstract—Computational Science on large high performance
computing resources is hampered by the complexity of these
systems. Much of this complexity is due to low-level details on
these resources that are exposed to the application and the end
user. This includes (but is not limited to) mechanisms for remote
access, configuring and building applications from source code,
and managing simulations and their output files via batch queue
systems.

These challenges multiply in a modern research environment,
where a research collaboration spans multiple groups, often in
loosely defined international collaborations, where there is a
constant influx of new students into multi-year projects, and
where simulations are performed on several different resources.

The Simulation Factory addresses these challenges by signifi-
cantly simplifying remote access, building executables, and man-
aging simulations. By abstracting out the low-level differences
between different resources, it offers a uniform interface to these
resources. At the same time, it can enforce certain standards
for performing simulations that encapsulate best practices from
experienced users. Furthermore, SimFactory’s automation avoids
many possible user errors that can in the worst case render
month-long simulations worthless.

The Simulation Factory is freely available under an open
source license.

I. INTRODUCTION

Although the speed and performance of high end computers
have increased dramatically over the last decade, the ease of
using such parallel computers has not progressed. The time
and effort required to develop and deploy parallel codes and to
manage and post-process simulations has become a bottleneck
in many areas of science and engineering. The difficulty of
using high performance computing is recognized as one of
the most significant challenges today in many areas of science
and engineering. Simplifying this is crucial to expanding the
understanding in these fields via the use of high performance
computing.

To simplify code development, large software projects use
a modular design or may employ software frameworks. These
aid in handling different versions, managing many users,
distributed code development, and complex machine archi-
tectures. Cactus [1], [2] is one such software framework
for science applications which is used to simulate physical
systems in different fields of science such as black holes

Erik Schnetter
Center for Computation & Technology/
Department of Physics & Astronomy
Louisiana State University

and neutron stars in general relativity. As in other software
frameworks, applications are built from separately developed
and tested components.

To effectively begin using high performance computing
(HPC), one has to overcome a set of unique technical chal-
lenges which have their roots in the fact that HPC systems
are expensive and unique, very different from commodity
workstations. These challenges include:

o preventing lock-in: the fundamental need to use multiple
HPC systems, since individual systems may be unavail-
able at any given time, and since HPC systems have a
much shorter life time than software;

e lack of standards: the fact that each HPC system is
often designed independently and can have very different
hardware architectures and usage policies;

o expensive mistakes: the low-level interface that HPC
systems offer to manage simulations which require batch
submissions and frequent maintenance of ongoing sim-
ulations with dire consequences for user errors that
can destroy weeks of data. For example, a job may
accidentally be started in the wrong directory and then
overwrite existing data, or data may accidentally be
deleted before they are successfully archived. Such errors
happen “naturally” if a user has to manually manage
several jobs at the same time.

For example, HPC systems differ in the available software
and their versions, their directory structure and file systems,
queuing systems, and policies, in addition to their hardware
differences. This makes porting codes, handling data, and
setting up simulations very tedious tasks on each system
anew. Yet for scientific results none of these differences
actually matter. Because HPC systems have a relatively small
number of users compared to commodity systems, there is
no obvious economic motivation to improve the situation,
since most heavy users of HPC systems have already become
adept at handling these differences. At the same time, large
HPC centers compete for funding (e.g. the 11 sites providing
TeraGrid resources for NSF) and for users. They thus have to
ensure they stand out and don’t merely copy another centre’s

practice. This makes standardization difficult.

Due to these challenges, users typically adopt one of two
modes of operation: one, where one decides on one particular
version of the software and one HPC system, and then uses
these exclusively, and another, where one leaves these details
to graduate students who then have to spend a significant
amount of time with these frustrating low-level details. These
challenges also lead to the perception that high performance
computing is very difficult and hinders update by newcomers.

To help drive forward a broader vision of HPC, we argue
that handling these details should not be the responsibility
of users in the first place, but should rather be folded into
the actual systems. We introduce the Simulation Factory,
a high-level interface to managing source code, accessing
remote systems, and performing simulations. The Simulation
Factory, also known as SimFactory, offers an abstract work
flow covering these tasks and offers a small set of commands
for the most-often required actions. All system details are
described in a machine database. Thus, the Simulation Factory
offers a uniform interface to users and renders different HPC
system into fungible ' resources.

A. Related Work

Many component frameworks face problems of collecting
components from various independent sources. The Eclipse [3]]
approach is probably most similar to the one we describe
below, with the exception that installing or updating Eclipse
components requires Eclipse (and a graphical user interface) to
be running, which can be inconvenient or prohibitive on HPC
systems. Eclipse also automatically enforces dependencies
between different versions of components; this is convenient
or necessary for a framework where most users are only end-
users, but probably inconvenient for a scenario where most
users are also developers and modify code so that the concept
of a “version” with a well-defined API is not well defined.

UBIQIS (ubiquitous install) [4] is a system for automatically
fetching and installing software from the web or even a peer
to peer network. It provides a place from where one can
automatically get software, but it does not require root permis-
sions to install, and the software repository is not centralized.
It automatically caches requests for software, automatically
fetching dependencies as they are needed. We are exploring
in how far UBIQIS can be incorporated into the Simulation
Factory [J5]].

Since its first release, Cactus has included a mechanism for
groups or individuals to maintain their own set of configuration
files for compiling their particular applications. A default set
of files was also distributed along side Cactus which were
sufficient to build the compete set of distributed thorns on
machines supported by the Cactus group with different option
files provided for different purposes (e.g. single processor,
MPI, debug). Since these option files followed a particular
naming convention and were available anonymously via CVS
they could be included in higher level tools for Cactus.

!Fungibility - A good or commodity capable of mutual substitution: http:
/len.wikipedia.org/wiki/Fungibility

For automated configuring and building, we describe and
compare to related approaches in section [[II-B] where we also
discuss the requirements that these have to satisfy.

An early driver for automated processes for compilation and
run time support came from Cactus’ role in the development
and prototyping of Grid Computing scenarios for scientific
computing. For example, in 2002 and 2003, a set of tools
(dubbed “GridTools” [6], and written in Perl) was developed
by Ian Kelley that acted as a compilation, deployment, testing
and prototyping infrastructure for Cactus on top of the Globus
Toolkit [[7] command-line tools, which are a set of tools for
grid computing that provide authentication, file transfer, job
submission, and more.

GridTools gave users the added benefit of being able to
easily run predefined tests upon a set of resources. GridTools
could do such things like query Globus Toolkit gatekeepers
or information services or perform GSI-ftp transfer tests, and
then aggregate all this information into a common view that
showed which parts of our testbed infrastructure were not
performing as expected. Since GridTools was created using
a modular approach for test integration, with most of its
core functionality stored in module libraries, it was very
trivial to add new or manipulate pre-existing tests. Leading
up to the HPC Challenge Awards at SC 2002 GridTools was
extensively used to test, setup, and verify our large testbed
infrastructure which included over 80 different production
HPC resources and subsequently won the HPC Challenge
Award for “Most Geographically Distributed Applications and
Most Heterogeneous Set of Platforms.”

Mock et al. [8] describe a batch script generator that was
used successfully from SDSC with Cactus, connecting to
about 80 different machines for a demonstration performed
at SC 2001. This script generator runs as a web application,
not necessarily tied into portal, to generate all the batch
scripts needed for the TeraGrid machines used during this
demonstration.

Yoon et al. [9]] describe the difficulties in launching applica-
tions on HPC systems. Their approach to solving this problem
differs in two crucial aspects from the approach described
here: First, it relies on web services instead of on tools that
are already available on standard HPC systems which makes
it difficult to quickly deploy their solution on a new HPC
system. Second, the descriptions of the available resources
(the machine database) are maintained in a distributed manner
by the resource owners. This is highly problematic because
these descriptions are often a low priority since the majority
of users do not need them. As a consequence, errors in
resource descriptions may not be corrected in a timely manner,
rendering resources unusable.

This paper is structured as follows. In section [[I[] we introduce
the Cactus Software Framework as model for the kind of
applications that our infrastructure supports. In section [II|
we introduce the Simulation Factory and describe its basic
concepts, and elaborate on some implementation issues in
section [IV] We describe our future plans in section

http://en.wikipedia.org/wiki/Fungibility
http://en.wikipedia.org/wiki/Fungibility

II. APPLICATION EXAMPLE: CACTUS SOFTWARE
FRAMEWORK

Cactus [1], [2] is a software framework for science applica-
tions which is used to simulate physical systems in many fields
of science and engineering such as black holes and neutron
stars in general relativity. As in other software frameworks,
applications are built from separately developed and tested
components. Cactus is an open-source, modular, and portable
programming environment for collaborative high performance
computing (HPC). It was designed and written specifically to
enable scientists and engineers to develop and perform the
large-scale simulations needed for modern scientific discovery
across a broad range of disciplines.

The Cactus code base is structured as a central part, called
the flesh that provides core routines, and components, called
thorns. The flesh is independent of all thorns and provides the
main program, which parses the parameters and activates the
appropriate thorns, passing control to thorns as required. By
itself, the flesh does not do any science; to do any computa-
tional task the user must compile in thorns and activate them
at runtime.

A thorn is the basic working component within Cactus. All
user-supplied code goes into thorns, which are, by and large,
independent of each other. Thorns communicate with each
other via calls to the flesh API or, more rarely, custom APIs
of other thorns. The Cactus component model is based upon
tightly coupled subroutines working successively on the same
data, although recent changes have broadened this to allow
some element of spatial workflow. The connection from a
thorn to the flesh or to other thorns is specified in configuration
files that are parsed at compile time and used to generate
glue code that encapsulates the external appearance of a thorn.
At runtime, the executable reads a parameter file that details
which thorns are to be active and specifies values for the
control parameters for these thorns.

The current version of Cactus provides many computational
modules for finite difference based methods and has been very
successful as indicated by the large number of scientific publi-
cations it has enabled. There exist currently (July 2010) more
than 500 thorns in over 50 arrangements at various sites world-
wide, many of which are publicly available. An international
consortium has recently (June 2010) released the Einstein
Toolkit [10], a complete, production-level, open-source set of
components for relativistic astrophysics simulations that uses
Cactus framework. We describe some details of the component
structure of the Einstein Toolkit in [11]].

Most researchers who use Cactus are developing their own
code, combining both public and self-written components.
This mode of work, whereas an existing code base is easily
augmented by new modules, is made possible by Cactus’s
component structure which does not require nor permit any
kind of centralized control. Researchers working in this way
then need to build and run their code on various platforms. We
depict the resulting life cycle of a simulation science project
in figure [T}

analyze

Y

Y

\

idea code simulate results

debug improve

Fig. 1. General life cycle of a simulation, beginning with an idea, proceeding
to a code development stage and then a production simulation stage, and
ending with simulation results being post-processed and analyzed.

As an interesting side note, we want to remark that we
have a sizable number of computer science researchers who
are using Cactus. These researchers are often not familiar with
the day-to-day usage of HPC systems since they have never
been trained in the corresponding low-level details, and thus
cannot undertake research in real-world systems. Nevertheless,
these researchers are important for developing new capabilities
with a sound theoretical backing. It is often difficult, if not
impossible, to close the gap between a prototype and a real-
world implementation.

Using HPC systems to perform simulations is similarly a
complex task. These systems are run in batch mode, where
one has to prepare a shell script that runs the actual code,
and then submit this script to a batch system. After some time
(hours or days), the script is executed, and its output and error
messages are returned to the user. It goes without saying that
debugging such scripts is very time consuming due to the long
turn-around time and any user error can delay a simulation
project by several days.

To add insult to injury, the maximum possible run times
in such queuing systems are usually measured in hours, and
not more than two days at best. This needs to be compared
to production-level simulations that can require run times of
the order of weeks. To deal with this, a simulation has to
checkpoint itself before its queue time runs out and then
restart when it receives another time slot in the batch system.
In addition, if one uses a large number of nodes, there is
an increased chance of system failures that will also require
checkpointing and restarting. Automating the corresponding
frequent re-submissions to the queuing systems is called job
chaining or presubmission. Dealing with queuing systems can
be very stressful for human beings because even small errors
can invalidate or destroy weeks of simulation results. Each
simulation day may consume 10k to 100k of CPU hours,
corresponding to $1k to $10k in US currency (if bought on
the free market).

The problems described here exist on all commonly avail-
able HPC systems and exist for virtually all current HPC
applications (including Cactus). It is clear that this situation
is highly unsatisfactory and that there is a dire need to shield
the user from system-level details and low-level simulation
maintenance operations.

Once a researcher has moved from postdoc to faculty, he
or she usually does not have the time any more to use HPC
systems daily. Once this practice is gone, it is very difficult

to get “back into the groove”, leading to highly unsatisfactory
situations where faculty (who often originally developed the
software!) cannot use them any more.

ITIT. SIMULATION FACTORY: BASIC CONCEPTS

SimFactory evolved as an application to manage the id-
iosyncrasies present in HPC systems. The complexity found
herein is a result of the uniqueness of each of these machines
and in the uniqueness of the codes users deploy there. Real-
world input from these users allowed SimFactory to move
beyond a prototype and into a practical, pragmatic applica-
tion that truly aids non-computer-science research. While the
design of SimFactory may seem overly complex in places, this
only reflects the complexity that exists in the world of high
performance computing.

SimFactory addresses three main goals: source code man-
agement, configuring and building simulations, and managing
and executing simulations. Building on a Machine Database,
SimFactory can accomplish these goals consistently and trans-
parently across any pre-configured HPC resource. Each of the
three main goals contains unique challenges that we describe
below. Figure [3| below describes the lifecycle of a simulation
as it directly relates to simfactory commands.

A. Managing Source Code

Many research codes are developed in an open and/or col-
laborative manner, where end users not only use applications,
but also make modifications or add their own modules. This
is in particular facilitated by the component model of the
Cactus framework (see section [[I| above) that we use as model
application here. A user may start with a certain version of an
application code, make these modification on a workstation or
notebook, and then move on to an HPC resource after some
testing.

While doing so, it is important to keep track of the different
versions and modifications of the application source tree. It
is usually not possible to use version control systems at this
stage, because (a) the user may lack direct write permissions
to the repository, or (b) the repository rules accept only well-
tested and finished changes. To facilitate development that
spans multiple machines and testing on different platforms,
SimFactory offers the following model:

o the user chooses a single home system where he/she
performs all code development;

« this home system contains the authoritative version of
the source code, or contains multiple versions in different
directories;

o all other systems are set up as mirrors of the home
system, i.e. usually the source trees on these systems is
not directly edited;

o SimFactory provides a convenient (easy and quick)
method to synchronize (mirror) source trees.

In particular, this implies that one accesses code repositories
(cvs, svn, git, ...) only from the home system. The code base
can consist of components that are hosted in many different

repositories. SimFactory will then replicate this source tree
structure from the home system to remote systems.

Compared to a more ‘“traditional” development model,
where one checks out the source code on multiple systems,
this has several advantages. First, all authoritative source code
versions are located on a single system where they can be
easily compared, backed up, etc. Second, source trees on dif-
ferent systems cannot diverge accidentally since SimFactory’s
mirroring command can keep them up to date. In addition, our
build environment (see section [[II-B] below) automatically tags
and captures source trees as executables are built, so that one
can recreate the source tree that was used to build a certain
executable.

Duplicating a source tree to a remote system requires
knowledge about remote access methods, authentication, di-
rectory names, etc.; SimFactory accomplishes this goal by
facilitating remote access and authentication with the remote
resource using a pre-configured authentication mechanism
such as ssh or the Globus Toolkit. If the remote system
is not world-accessible, SimFactory uses “trampolines” (one
or more intermediate, authorized machines) to complete a
trusted authentication chain. Building on these mechanisms,
SimFactory performs the actual synchronization using rsync
or a comparable mechanism. It should be noted that this
mechanism requires typically only a few minutes with a cold
file cache, and under ten seconds with a hot file cache.? We
show example timing results in figure

This synchronization replicates not only source code but can
also replicate parameter files and input files

B. Configuring and Building

Before running simulation one has to configure and build an
executable from the source tree. These steps typically cannot
be performed automatically and require user input; often, a
complex set of inter-dependent configuration variables has to
be set. In fact, this step is often so complex that only experts
are able to configure and build an application on a particular
system even if the applications themselves are portable.

There are two kinds of configuration settings for an ap-
plication. Some configuration settings select features of the
application (e.g. whether a certain component is to be in-
cluded, or what level of optimization should be used). Other
configuration settings are determined by the host system and
have to be chosen “just right” to make everything work (e.g.
compiler version, compiler flags, paths to external libraries,
etc.)

Tools that are commonly used to help configuring and build-
ing applications are either not available on or not applicable
to HPC systems. System-level tools such as rpm [12] or
apt [13] are not provided on HPC systems, and cannot be in-
stalled by end-users. User-level tools such as autoconf [14]

2This assumes that there are only few modifications to the source tree, as
is usual during a edit-compile-test cycle. These times depend greatly on the
file system. A cold cache refers to the first time these files are accessed in
the edit-compile-test cycle, which requires the files be read from disk, and a
hot cache refers to the files being in memory in the file system cache.

Machine Location full/cold full/hot | update/cold update/hot
numrel10 CCT (local) 52 40 5 5
Eric LONI 57 40 5 4
Queen Bee LONI 64 64 7 7
Kraken NICS 2277 1955 14 15
Ranger TACC 112 106 23 16

Fig. 2. Source-tree synchronization timings. (All times in seconds, rounded to the nearest second.) This measures synchronizing the complete Einstein Toolkit
[10] source tree from a machine at the CCT (LSU) to the specified machine. This source tree consists of about 50k files with about 450 MByte. (“full” copies
the tree for the first time, “update” has the source tree already present on the destination; “cold” and “hot” describe the state file system cache.) In all cases,
updating an existing source tree takes only a few seconds. The initial copy on Kraken takes an inordinate amount of time; this is a property of Kraken’s file

system and is also seen independent of the Simulation Factory.

do not work well because (a) existing software is often
installed in non-standard locations, (b) several fundamentally
different versions of a particular package may be available,
requiring a user choice (e.g. between Intel and PGI compilers),
and (c) testing whether a feature is present or not may require
executing an application which may require using a batch
system to submit a job with a turn-around times measure in
hours. (Thus autoconf may require days to complete.) Finally,
autoconf’s approach of simply trying out whether a feature
is available may be considered abuse of the system and be
disallowed by usage policies.

CMake [15] has features similar to autoconf; there is
no provision for a database that would store machine-specific
configuration details.

Most HPC systems allow user-level configuration tools
such as SoftEnv [16] or Environment Modules [17]. These
packages allow users to choose between several installed
software versions (e.g. different compilers), and (if set up
properly) will ensure that all enabled software packages are
compatible with each other. Unfortunately, SoftEnv settings
are global to a user’s account, so if a user builds an exe-
cutable, and then switches his/her SoftEnv settings while this
executable is waiting in a queue, the job may crash when it
finally starts since important libraries may not be available
any more. Environment Modules remedy this flaw but they
still do not provide sufficient information to (a) choose a
particular version of a module, or (b) select good compiler
options for this version. It is also not possible to automatically
determine what library a particular module provides, as only
a module’s name is available — the BLAS [18]] library may
e.g. be provided by modules called acml [19], atlas [20],
essl [21], gotoblas [22], or mk1 [23], (and none of which
provide the Netlib reference implementation [18]). Similar
ambiguities exist with choosing a compiler or with choosing an
elliptic solver if the application supports several interfaces (e.g.
both PETSc and Hypre). And in the end, there may still be
incompatibilities due to errors or mis-interpretations between
any of these or any of these and the application, which may
only be detectable as crashes at run time.

What this all amounts to is that one has to carefully study
a system’s documentation and perform careful experiments to
find good, working configuration options.

SimFactory stores the complete configuration information
for every machine (for a given application) in its machine

database. This allows everybody (including new users) to
quickly build the application on every supported system. This
configuration information is thus, in its entirety, “blessed”
by its corresponding maintainer, providing a service to the
community. This approach is in contrast to a design where
the simulation factory would pick up bits and pieces of
configuration information automatically from the host system
and would then combine the configuration information by
itself; this approach lacks the “seal of approval” that exists
in the current approach. Given the complexity of identifying a
correct set of configuration information for a particular system,
where even small details can uncover compiler errors or lead
to inconsistencies between different libraries, such a seal of
approval is crucially important.

The disadvantage is that this approach does not scale well
— it requires one maintainer per application per supported
system and the Cactus configuration information with about
30 supported production system is reaching this limit. We
suggest to address this in two ways: In the short term, we
assume that each user community will maintain their own
machine databases, limiting the number of systems that need
to be supported in each of these. In the long term, we expect
resource providers to maintain more and more details about
their systems in formal descriptions in a reliable manner,
so that parts of the machine database can be determined
automatically.

The Cactus framework supports building multiple executa-
bles from the same source trees. Each of these executables is
called a configuration, since they differ in the configuration
settings that were used to create them. These configuration
settings include a thorn list (list of components that should be
included into the configuration), and a set of high-level build
options such as debug, optimise, or profile. These configura-
tions have different names, allowing the user to specify which
configuration to use when performing a simulation.

In many cases, a single SimFactory command suffices
to create a Cactus executable from a given thorn list and
the very same command works on any production machine
that a research group may be using. This is a substantial
simplification over the previous state of affairs and allows
every Cactus user to add or modify code and then re-build
the configuration with only minimal effort.

C. Managing Simulations

Once a configuration has been created, SimFactory provides
functionality for performing simulations, either by submitting
and managing jobs via a job queueing system, or by directly
running the executable.

The simulation factory follows a high-level abstraction
for performing simulations. In this abstraction, performing a
simulation consists of many more operations than just running
the executable. In particular:

o The first step is to create a simulation, which captures
an executable, a parameter file, any input files there
may be, as well as any other parameters that determine
the physical result of the simulation. This excludes any
incidental parameters (see below), and does not actually
start the simulation.

o To make progress with the simulation, one either sub-
mits or runs a restart (roughly equivalent to a “job” in
a queueing system). This requires choosing incidental
parameters, such as the number of processes, wall time
limit, allocation/queue names, etc. At most one restart
can be active at one time.

o After the restart finishes, it is cleaned up, which may
consist of minor actions such as correcting file permis-
sions, or deleting unnecessary or broken files, or may e.g.
automatically archive simulation results.

o A simulation may consist of arbitrarily many restarts.
Presumably, each restart continues where the previous
restart left off. (This is necessary since queue time limits
on HPC systems are often much too short to complete a
simulation.)

Figure [3| shows the life cycle of a simulation and its restarts
graphically.

This high-level model for performing a simulation differs in
certain crucial respects from a “naive” way of doing so. First,
it distinguishes clearly between those parameters that influence
the scientific result and those that are only incidental. Second,
the simulation factory explicitly captures all parameters and
necessary input (by copying) so that one cannot accidentally
modify these parameters while a simulation is running, which
can be a time scale of many weeks. Third, it introduces the
notion of a clean-up step after each restart has run, providing
a hook for additional actions, such as automatically archiving
results.

Finally, the simulation factory performs these details auto-
matically, consulting the machine database to be able to map
these details onto a particular system. By performing these
actions automatically, (a) each simulation (within a research
group) is performed in a consistent manner, allowing others
to understand the directory layout and access the results, (b)
users are relieved of performing many tedious low-level tasks
manually, and (c) many errors and accidental omissions are
avoided. By implementing best practices in the simulation
factory, the often unwritten experience of users is captured,
resulting in simulations that are “naturally” performed in the
“best possible” manner, including e.g. capturing all necessary

simulation is created

simulation

run

submit

v
active/queued simulation is stopped

run

A
simulation starts (—
> active/running

A

simulation is stopped

simulation finishes

Y
active/finished <

simulation is cleaned up

active/running [deleted]

simulation finishes

|

inactive

analyze results

Fig. 3. Simulation Workflow. This shows the life cycle of a simulation,
starting from its creating, proceeding potentially through several restarts, until
it is finished. The bold text directly corresponds to SimFactory commands.

provenance information to make simulations truly repeatable.
In detail, the simulation factory performs the following
actions:

« create and populate a directory structure for the simula-
tion;

o copy all executables, parameter files, and input files to
save them from accidental modification (ensuring to avoid
superfluous copies to save disk space);

« manage checkpoint files, and/or ensure the correct check-
point files are used when restarting;

o allow presubmitting (or chaining) of restarts, i.e. submit-
ting several restarts at once that will then automatically be
executed sequentially (if and as allowed by the queueing
system and system policies);

« allow to run executables directly or interactively, poten-
tially using “interactive queued jobs”;

o use and/or create unique identifiers for simulations and
restarts, so that output files can be tagged pointing back
to the exact simulation;

« automatically archive simulations and restarts, since files
on HPC systems are often automatically deleted after
some time;

e clean up in various minor but convenient ways, e.g.
correct file permissions or delete unnecessary output files.

D. Information and Status Inquiries; Provenance

In addition to the actions supporting source tree manage-
ment, configuring/building, and managing simulations, Sim-
Factory offers commands to display information and inquire
about the status of simulations and restarts. This includes
displaying Machine Database entries and configuration infor-

mation. This allows the user to monitor simulations, know
when they are completed, and check and restart them if they
are interrupted. This also provides access to the list of the HPC
resources that have been pre-configured, allowing the user to
know which HPC resources they can begin using immediately.

In performing the actions described above, SimFactory
keeps a log trail associated with each simulation, describing
all steps that led to a particular simulation state and the
order in which they were taken. SimFactory also keeps safe
copies of all executables and input files that were used for
a particular simulation so that changes to these files outside
of SimFactory’s control do neither affect currently ongoing
simulations nor confuse the log trail.

Furthermore, SimFactory generates and manages unique
identifiers for each simulation and restart and passes these and
other provenance information on to the application which can
then e.g. tag output files and images. SimFactory also under-
stands provenance information generated by the application,
which is stored together with application output and which is
displayed to the user together with other application output.

E. Machine Database

The main idea behind SimFactory is to provide a resource
agnostic tool that is able to take full advantage of the various
HPC resources available to researchers. To separate SimFac-
tory from the resource on which it is used, we employ a
machine database, which is a collaborative database compiled
by SimFactory maintainers, researchers, and other users that
stores all machine dependent information. This database is of
crucial importance to SimFactory’s design (see section
above).

Each machine database entry is broken out into four groups:

e Machine description: information about the machine it-
self, used for logging/informational purposes;

e Machine access: parameters defining remote access and
management of the resource, e.g. defining how to log in
or to synchronise files and directories;

e Source tree management: parameters for defining a good
directory for the source tree, the default make command,
and what the default configuration options are;

o Simulation management: parameters containing informa-
tion on how to submit, manage, and run simulations using
the resource’s specific job queueing system.

This database provides the user the ability to run SimFactory
on any known resource. We use the word “known” because
the Machine Database is a collection of pre-defined settings
that represent the knowledge SimFactory must have in order to
configure, build, and run simulations. The Machine Database
provides the ability to deploy simulations quickly and effi-
ciently.

IV. IMPLEMENTATION ISSUES

Below we discuss some interesting challenges that had to
be addressed in the design and implementation of SimFactory.
Specifically, we will focus on the evolution of SimFactory to
its current state, the method used by SimFactory to become

machine agnostic, the abstraction we use to communicate
SimFactory’s command line options between its modules, the
restart abstraction, which represents how SimFactory encapsu-
lates a specific stage of a simulation and finally how SimFac-
tory represents presubmitted jobs internally, which involves
creating and submitting multiple jobs to a job queuing system
to handle simulation wall times greater than the maximum
allowed wall time for a single job.

A. History

SimFactory was originally designed for SC 2006 to simplify
executing sets of benchmarks on many HPC systems, and was
implemented as a monolithic Perl script centered around the
Machine Database. The Machine Database was implemented
as Perl hash table initialized via executable Perl code. The
three different tasks (source code management, configuring
and building, simulation management) existed from fairly
early on, as did the distinction between a simulation and a
restart. Advanced features such as presubmission was “tacked
on” later and didn’t quite fit the original abstract model
of a simulation, and neither did running a restart without
submitting it to a queue. In addition, after growing a user
base, maintaining the Machine Database and its necessary
local modifications in executable Perl code was not attractive
any more.

While updating the abstract model of a simulation, we
decided to restructure SimFactory’s internal implementation
and to switch to Python as implementation language because
several of the main users and contributors requested so.>
One of the main features of the SimFactory is that it can
run everywhere without being installed (just downloading or
copying must suffice), which essentially leaves only Bash,
Perl, or Python as implementation languages. We found that
most HPC systems run Python 2.3 or later — this also nicely
demonstrates the extremely conservative time scale on which
HPC systems install or update software.*

We rewrote SimFactory in Python as an object-oriented,
module-based application. SimFactory consists of four sep-
arate modules, corresponding to the features described in the
subsections of section [II] above. Each module can either be
called directly by the user, or can be dispatched as an imported
module by a (future) GUI application. SimFactory currently
includes one command line UI application called sim, main-
taining command-line compatibility with the previous version
while also providing access to new functionality. Each of these
four main modules relies heavily on the Machine Database to
provide information about the HPC resource on which it is
executing.

3The main reasons cited for preferring Python was the cleaner syntax and
the more elegant modern facilities to support large-scale programming, such
as classes and modules. One reason cited against Python was that it does not
perform a static type checking at startup, so that uninitialized variables are
only detected at run time.

4Python 2.3 was released in 2003; we write this paper in 2010.

a block of text

Official Cactus entries
sync—-sources = <<EOT
CONTRIBUTORS

COPYRIGHT

Makefile

arrangements

src

1lib

EOT

Fig. 4. Example of a multi-line block of text in the machine database, listing
multiple directory names for the key sync-sources.

B. Machine Database Details

1) File Format: As described in section [lII-E] above, the
machine database describes properties of each machine so that
SimFactory can provide a resource-agnostic user interface.

The HPC user community dislikes non-human-readable file
formats for non-performance critical information. We therefore
use the INI file format [24], extended to support multi-line
block text entries similar to “here” documents found in Bash
and Perl. Figure [5] shows a partial entry for a particular
machine, and figure [f] demonstrates a multi-line entry. Multi-
line block entries use << followed by any sequence of
characters and then a newline to indicate the start of a block.
To end the block, the same sequence of characters following
<< must be repeated on a line by themselves.

We chose this file format because it is both readable and
portable. The INI file format is platform agnostic, clear-text,
and easily understood, created, and edited because of its simple
syntax.

2) Implementation: The Machine Database is comprised of
a set of entries with predefined keys, separated into sections
with unique names for each machine, as shown in figure [3

We anticipate that users will have to maintain local mod-
ifications of the Machine Database, typically to define their
user names and allocations on these system. To facilitate this,
SimFactory provides the user with the ability define global
defaults in a [default] section, as shown in figure @
Settings defined here propagate to all Machine Database
entries. Users can also provide new Machine Database entries,
describing e.g. private systems such as personal workstations
or notebooks, and can overwrite specific keys in the Machine
Database. Figure [/|demonstrates how to define a different user
name and thorn list, which will also override the value in
the [default] section, for a pre-defined Machine Database
entry.

The Machine Database comes pre-configured and is main-
tained by the developers and maintainers of SimFactory. The
last database, the User Database, is where the user makes their
edits, adds their local workstation if necessary, and defines
necessary default values that will propagate throughout each
of the three databases.

The databases are located in the SimFactory source tree

[queenbee]

Machine description

nickname = gqueenbee

name = Queen Bee

location = LONI, LSU

description = The large LONI Linux clu...
webpage = http://www.loni.org/...
status = production

Access to this machine

user = YOUR_LOGIN

email = YOURWEMAIL.ADDRESS
hostname = gb4.loni.org

rsynccmd = /home/eschnett/rsync-3.0...
sshcmd = ssh

localsshsetup = :

sshsetup = :

aliaspattern = "gb[0-9] (\.loni\.org)?$

Source tree management
sourcebasedir = /home/QUSER@

Fig. 5. Example partial Machine Database entry in the human-readable INI
file format. This is taken from the entry describing Queen Bee, a shared
LONI/TeraGrid system in Baton Rouge, LA.

[simfactory }
<)

Machine
Database

Fig. 6. Simulation Factory db file structure.

override some mdb entries

[gqueenbee]

user = mthomas

thornlist = einstein-bassi.th

[is]

user = mthomas

thornlist = einstein-numrel-intel.th

Fig. 7. Machine database syntax: Specifying a different user name for certain
machines in the machine database.

Defaults for all machines

[default]

user = mwt

email = mthomas@cct.lsu.edu
allocation = loni_cactus04

Fig. 8. Machine database syntax: Defining default values to override entries
in the machine database.

inside the etc folder, as seen in Figure [6]

C. Macros

Machine database entries, option lists, script files, and other
files that are processed by the SimFactory can contain macros
that are replaced at run time. For example, every instance of
@USERQ found in the [queenbee] Machine Database entry
(see figure [5) will be replaced by the username mthomas, as
specified in figure [/] This allows the user the flexibility to set
the user name once and use it in a generic manner for any
other user-name dependent parameters needed by SimFactory.

In addition to a set of predefined macros that correspond
to Machine Database entries or values gathered from the
system (such as e.g. a simulation job id), one can also define
additional, arbitrary macros via command line options to
SimFactory.

D. Restarts

One unique challenge SimFactory addresses is how to
manage multiple stages of a single simulation, whether the
stage represents a fresh start or a recovery from a previously
interrupted simulation. To address this, SimFactory contains
an abstraction called restart. Figure [3] in section above
shows the typical life of a SimFactory restart. A restart
encapsulates several key operations:

e create: Before a simulation can be submitted or exe-
cuted, it must be created. This process initializes any
required configuration parameters, directories, and any
other infrastructure necessary to facilitate submission or
execution.

o submit: The submit operation submits the simulation to
the queueing system of the host system. A shell script
file is the command that is sent for submission. This
script contains the necessary options to initialize the
queueing system correctly, such as choosing the correct
wall time, and then commands calling the SimFactory
run operation. This submit operation does not contain
any execution logic.

o run: The run operation is where all execution logic lives.
The run command is capable of launching simulations
that have either been submitted in a queuing system,
or are executed directly, without the use of a queueing
system. The ability to execute a simulation directly is
necessary for running small simulations on a local work-
station or notebook. The run operation uses the mpirun

command specified in the Machine Database. This com-
mand can be any shell command, such as the actual
mpirun command to launch a job using the system’s
MPI implementation, or just the simulation binary itself,
skipping the use of the MPI altogether.

E. Presubmission

One of the most important challenges SimFactory has to ad-
dress is the need to execute simulations automatically beyond
the maximum execution time allowed on the HPC resource. To
facilitate this, SimFactory determines, based upon the specified
and maximum allowed wall time, how many submissions to
the queueing system are necessary. SimFactory then submits
the job this many times and then sets up the necessary daisy-
chain to make the simulations launch in the correct order. A
simulation checkpointing system, which allows a simulation to
resume where it has left off, is necessary for presubmission.

V. FUTURE PLANS

We plan to extend the feature set provided by SimFac-
tory to include managing simulation output, i.e. often large
output files that are “left behind” after simulations have
finished. Managing simulation output also depends on low-
level machine characteristics, such as after how much time
it will be deleted automatically, what commands have to
be used to access it efficiently, and what long-term storage
mechanisms can be reached from the simulation machine.
Other challenges include ensuring that simulation output files
and post-processing results remain “together”, so that one can
reliably trace back to the root of the simulation e.g. from a
figure found in a publication or an image found on a web site.
This topic involves repeatability of numerical calculations and
provenance of numerical data, and the SimFactory is an ideal
vehicle to implement the corresponding low-level mechanism
to spare the user these details.

Another possible extension of SimFactory is to support
simulations running across multiple sites or off-loading certain
ancillary (analysis) tasks to secondary machines to reduce the
load on the primary machine. In the past, several of the issues
relating to identifying such tasks in the Cactus framework
were addressed [25], [26], but reliably being able to mirror
the source code onto remote systems and reliably starting new
simulations there remained an unsolved problem. This will be
an ideal application case for the SimFactory.

While SimFactory is currently targeting the Cactus frame-
work, it is clear that the issues it addresses and the solution
it offers are relevant for many other applications as well.
We intend to abstract out all application-specific bits into an
application database so that SimFactory can support other
applications as well, as long as these require any of the
same basic features (access to remote systems, source code
management, simulations on HPC systems).

Other simulation packages (e.g. Enzo, ADCIRC, NAMD,
etc.) face very similar issues. If a package is used only as
“black box” on an HPC system, without making modifications
to its source code, one can use a pre-installed copy of the

executable which often mitigates these problems. However, it
is the nature of graduate student research that new methods and
new algorithms be tried out and these will then have to face
the issues. The basic workflow (build and test on local system,
build and test on HPC system, submit and manage a set of
jobs, handle checkpointing and restarts) is virtually identical
for most simulation packages. We have recently begun to
investigate SimFactory support for ADCIRC [27] [28]], which
is used to model storm surges caused e.g. by hurricanes in the
Gulf of Mexico.

While the SimFactory provides the infrastructure (middle-
ware) for the features it offers, it also provides only command-
line interfaces. Graphical User Interfaces (GUIs) would pro-
vide several obvious advantages; first, guiding the user to
possible next steps for each state (making SimFactory easier
to use for beginners), and second, providing visual feedback
about the current state and keeping it updated automatically,
without requiring a user command and the lag time thereafter.
The (command line) user interface logic is separate from the
application logic, which will allow us or others to offer a GUI,
based e.g. on QT [29] or GTK [30], or via a web service. We
are also currently implementing a TeraGrid Gateway [31] for
numerical relativity that will use the Simulation Factory.

Since being accepted, this work has also been presented as
a poster at TeraGrid *10 [32]].

SimFactory is released under an open source license and is
freely available as part of the Einstein Toolkit, as described
on http://einsteintoolkit.org.

ACKNOWLEDGMENTS

We thank Tan Hinder for his suggestions and contributions
toward the current state of the Simulation Factory, in particular
for mercilessly simplifying the user interface and suggesting
and driving the implementation of presubmitting. We also
thank all users who have contributed or updated machine
database entries. We especially thank Gabrielle Allen for her
insightful and helpful comments while writing this paper.

We acknowledge support from the awards NSF OCI
0721915 Cactus Tools for Application Level Performance and
Correctness Analysis (Alpaca), NSF PHY 0701566 XiRel, A
Next Generation Infrastructure for Numerical Relativity, NSF
PHY 0904015 Community Infrastructure for General Rela-
tivistic MHD (CIGR), NSF OCI 0932251 TeraGrid Extension:
Bridging to XD, and the REU project Interdisciplinary Re-
search Experience in Computational Sciences via NSF award
OCIT 1005165 and NSF/Louisiana Board of Regents award
ESP 0701491. MT gratefully acknowledges financial support
from the TeraGrid to attend the TeraGrid *10 conference.
We accessed HPC resources on the TeraGrid via allocation
TG-MCAO02NO14, at NERSC supported by DOE contract
DE-AC02-05CH11231, and on LONI under the allocations
loni_cactus and loni_numrel.

REFERENCES

[1] T. Goodale, G. Allen, G. Lanfermann, J. Massé, T. Radke, E. Seidel, and
J. Shalf, “The Cactus framework and toolkit: Design and applications,”

[2]
[3]
[4]
[5]

[6]
[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
(16]

[17]
(18]

[19]
[20]

[21]

[22]
(23]

[24]
[25]

[26]

[27]

[28]

[29]
(30]
[31]

[32]

in Vector and Parallel Processing — VECPAR’2002, 5th International
Conference, Lecture Notes in Computer Science. Berlin: Springer, 2003.
Cactus Computational Toolkit home page. [Online] http://www.
cactuscode.org/

Eclipse: An open development platform. [Online] http://www.eclipse.
org/

UBIQIS — Ubiquitous Install. [Online] http://code.google.com/p/ubiqis/
S. Brandt, G. Allen, M. Eastman, M. Kemp, and E. Schnetter, “Dynamic
deployment of a component framework with the Ubigis system,” 2009,
accepted for ICADIWT 2009.

I. Kelly, “GridTools — a collection of grid scripts for HPC resources.”
GLOBUS - The Globus Toolkit. [Online] www.globus.org

S. Mock, C. Youn, M. Pierce, G. Fox, and M. Thomas, “A batch script
generator web service for computational portals,” High-Performance
Distributed Computing, International Symposium on, p. 421, 2002.
I.-C. Yoon, A. Sussman, and A. Porter, “And away we go: understanding
the complexity of launching complex HPC applications,” in SE-HPCS
’05: Proceedings of the second international workshop on Software
engineering for high performance computing system applications. New
York, NY, USA: ACM, 2005, pp. 45-49.

The Einstein Toolkit: Open software for relativistic astrophysics.
[Online] http://einsteintoolkit.org/

E. Schnetter, “Multi-physics coupling of Einstein and hydrodynamics
evolution: A case study of the Einstein Toolkit,” 2008, CBHPC 2008
(Component-Based High Performance Computing).

RPM — RPM Package Manager. [Online] http://www.rpm.org

Apt — Advanced Package Tool. [Online] http://wiki.debian.org/Apt
GNU Autoconf. [Online] http://www.gnu.org/software/autoconf/
CMake - Cross Platform Make. [Online] http://www.cmake.org
SoftEnv — MCS Systems Administration Toolkit. [Online] |http:
/Iwww.mcs.anl.gov/hs/software/systems/msys/|

Environment Modules Project. [Online] http://modules.sourceforge.net/!
BLAS: Basic Linear Algebra Subroutines. [Online] http://www.netlib.
org/blas/

ACML — AMD Core Math Library. [Online] http://developer.amd.com/
cpu/Libraries/acml/Pages/default.aspx

ATLAS - Automatically Tuned Linear Algebra Software. [Online]
http://math-atlas.sourceforge.net/

ESSL - Engineering and Scientific ~ Subroutine Library.
[Online] http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.
jsp?topic=/com.ibm.cluster.essl.doc/esslbooks.html

GotoBLAS2. [Online] http://www.tacc.utexas.edu/tacc-projects/
gotoblas2/

MKL - Intel Math Kernel Library. [Online] jhttp://software.intel.com/en-
us/intel-mkl/

The INI file format. [Online] http://en.wikipedia.org/wiki/INI_file

G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke,
E. Seidel, and J. Shalf, “The Cactus worm: Experiments with dynamic
resource discovery and allocation in a grid environment,” Int. J. of High
Performance Computing Applications, vol. 15, no. 4, 2001. [Online]
http://www.cactuscode.org/Articles/Cactus_AllenOla.pre.pdf

G. Lanfermann, G. Allen, T. Radke, and E. Seidel, “Nomadic migration:
A new tool for dynamic grid computing,” in Proceedings of Tenth IEEE
International Symposium on High Performance Distributed Computing,
HPDC-10, San Francisco. 1EEE Press, pp. 435-436. [Online]
http://www.cactuscode.org/Articles/Cactus_LanfermannOla.pre.pdf]
ADCIRC - Coastal Circulation and Storm Surge Model. [Online]
www.adcirc.org/

S. L. Dubbaka, R. S. H. Bhagawaty, L. Jiang, K. Hu, S. Pothanis,
N. Brener, E. Schnetter, G. Allen, S. S. Iyengar, and T. Kosar, “Auto-
mated system to construct a simulated hurricane database,” 2010, poster
at: TeraGrid 2010 Conference.

Qt — A Cross platform UI Toolkit. [Online] http://qt.nokia.com/
GTK+. [Online] http://www.gtk.org/

TeraGrid Science Gateways. [Online] https://www.teragrid.org/web/
science- gateways/

M. W. Thomas, E. Schnetter, and G. Allen, “Simulation Factory:
Simplified Simulation Management,” 2010, poster at: TeraGrid 2010
Conference.

http://einsteintoolkit.org
http://www.cactuscode.org/
http://www.cactuscode.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://code.google.com/p/ubiqis/
www.globus.org
http://einsteintoolkit.org/
http://www.rpm.org
http://wiki.debian.org/Apt
http://www.gnu.org/software/autoconf/
http://www.cmake.org
http://www.mcs.anl.gov/hs/software/systems/msys/
http://www.mcs.anl.gov/hs/software/systems/msys/
http://modules.sourceforge.net/
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://developer.amd.com/cpu/Libraries/acml/Pages/default.aspx
http://developer.amd.com/cpu/Libraries/acml/Pages/default.aspx
http://math-atlas.sourceforge.net/
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.essl.doc/esslbooks.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.essl.doc/esslbooks.html
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
http://software.intel.com/en-us/intel-mkl/
http://software.intel.com/en-us/intel-mkl/
http://en.wikipedia.org/wiki/INI_file
http://www.cactuscode.org/Articles/Cactus_Allen01a.pre.pdf
http://www.cactuscode.org/Articles/Cactus_Lanfermann01a.pre.pdf
www.adcirc.org/
http://qt.nokia.com/
http://www.gtk.org/
https://www.teragrid.org/web/science-gateways/
https://www.teragrid.org/web/science-gateways/

	I Introduction
	I-A Related Work

	II Application Example: Cactus Software Framework
	III Simulation Factory: Basic Concepts
	III-A Managing Source Code
	III-B Configuring and Building
	III-C Managing Simulations
	III-D Information and Status Inquiries; Provenance
	III-E Machine Database

	IV Implementation Issues
	IV-A History
	IV-B Machine Database Details
	IV-B1 File Format
	IV-B2 Implementation

	IV-C Macros
	IV-D Restarts
	IV-E Presubmission

	V Future Plans
	References

