
IMPROVING SOFTWARE QUALITY UTILIZING AN
INTEGRATED CASE ENVIRONMENT

Peter H. Luckey and Robert M. Pittman

IBM Federal Sector Division, Route 17C, Owego, NY 13827

New methods in software development, coupled with
Computer-Aided Software Engineering (CASE)
t d s , make it p i b l e to minimize the cost and
greatly improve the quality of Ada software through
the application of an integrated CASE environment.
In response to a recent trainer system contract op
portunity, the Trainer and Simulation department
located at IBM’s Owego, NY facility is currently in
the process of transitioning from a more traditional
software development approach to an integrated en-
vironmen t comprised o f state-of- thcar t hardware,
tools and a selectcd software devclopnient m e t h d d -
ogy. The pre-intcgration devclopmcnt environment is
discus.. . The chosen environment implementation
is also discussed, including the CASE Real-Time
CurriculumTM developed by Paul Ward. This Curric-
ulum describes a software requirements and design
development method that is king applied to dcvelop
reusable, object-oriented domain models. Technical
considerations driving the implementation o f the het-
erogeneous environment coinprised of IDM and ven-
dor products are addressed. The current status o f the
CASE environment, with a look towards i ts future
capabilities, is also discussed.

For many years IBM’s Owego, NY facility has per-
formed software requirements development and de-
sign in a non-integrated, highly manual, text-oriented
fashion. In response to a recent trainer system con-
tract bid, in parallel with ongoing research into the
software development process, the facility’s Trainer
and Simulation department had the opportunity to
examine altemative development approaches aimed
at increasing the quality of its Software Requirements
Specifications (SRS) and subsequent software design
and code.

As part of tlus examination, the following trend in
SRS development was discovered:

SRSs are continually plagued with improperly
detailed requirements

Though the Systems Engineering organization
possesses a detailed software requirements de-
velopment approach, lack of strict adherence to
this approach has caused SRS level and type of
detail to be driven more often by individual en-
gineer personalities and experience rather than
technical need

Improperly detailed SRSs containing varied
contents have caused some of these specifications
to take on a ’life of their own”, yielding a large
number of unpredictable changes tllroughout the
development cycle. This situation has destabi-
l ied projects due to negative impact on system
development schedule and cost, Systems Engi-
neering and Software resources, and difficulty in
maintaining traceability between the specifica-
tion and subsequent software design due to the
instability of the specification.

Recognizing this trend, exacerbated by the trainer
system contract demand for application of CASE
tools and the Trainer and Simulation department’s
overall desire for higher software quality and pro-
ductivity, a team of systems and software engineers
was formed to investigate the incorporation of new
methods and tools into the software development
process.

INTRODUCTION OF AN INTEGRATED CASE
ENVIRONMENT

In order to discuss improvement of software quality
through utilization of an integrated CASE environ-
ment, it is important to understand the characteristics
of a generic environment before examining the details
of a specific impIementation.

CH3007-2/91~00-00665 $1.00 * 1991 lEEE

To determine the implementation components of our
integrated CASE environment, the engineering team
examined the software development lifecycle and the
specific requirements of the trainer system contract
to select a set of high-level requirements that the
environment must meet. The team concluded that
the integrated CASE environment, in order to not
only support the contract but also improve overall
software quality and productivity, must:

Support reusable requirements, designs and Ada
software

Provide an electronic interface between tools
such that various hardware components can
electronically communicate and allow data to be
entered into the environment only once during
the development process

Provide computer-assisted software development
tools across the software development lifecycle

Support a lifecycle-encompassing development
method that is fully supported by the tools yet
is tool independent. The method must provide
a cognitive framework within which the software
engineers can use the software tools to perform
the development lifecycle phase tasks.

Bascd on available technology, the team concluded
that our principle hardware components, the user
workstations, could easily be networked together.
The team also determined that a host or server would
be required for software tools. This electronic inter-
face, which could be implemented in an ADjCycle
Repository approach or by a common data format,
would allow data to flow from one tool to another
without human intervention.

The selection of the CASE tools was influenced by
contract constraints as well as previous software de-
velopment experience. The contract specified the use
of Cadre teamwork0 for requirements development,
while previous software development projects
pointed to the Rational Ada Development Environ-
ment to support software design, code, test and in-
tegration.

Since a driving contract requirement was to develop
reusable, real-time software, the team selected the
combined methods described in The CASE Real-

Time CurriculumTM as the software development
method. As illustrated in Figure 1- 1 on page 3, the
selected tools support the development method from
front-end system requirements analysis through
software design.

APPLICATION OF THE INTEGRATED CASE
ENVIRONMENT

To meet the requirements of the trainer system con-
tract as well as achieve the desired software develop-
ment quality goals, the systems and software
engineering team next investigated available tech-
nology that would meet the requirements of the in-
tegrated CASE environment. Upon conclusion of
this investigation, the team decided to implement the
environment by applying a mix of IBM workstations,
networks, and graphics and text-based CASE tools
to support Ward's CASE Real-Time MethodTM.

Hardware and tools

As illustrated in Figure 1-2 on page 4, the Integrated
CASE Environment hardware complement consists
of RISC System/6000m Model 320 workstations
connected to a central RISC System/6000TM Model
320 server on an IBM Token Ring network. The
Model 320 workstations, available to both systems
and software engineers, provide common access to
the software requirements through the Cadre
teamworm graphics-oriented CASE tool. The
Model 320 Server, to be upgraded to a Model 530
processor in the near future, houses the teamwork0
control information as well as Cadre
teamwork@/Rqt, a supporting requirements
traceability tool. IBM PS/2 personal computers as
well as IBM X-terminals provide additional access
to requirements information, while the Owego
Backbone Ring and a Model 9370 processor provide
access to host application software, electronic mail,
scheduling and other support services.

The Rational Ada development environment

While the RISC System/6000TM Model 320 work-
stations provide a platform for Cadre teamworm,
the Rational R 1000 Coprocessors provide a superb
Ada software design, code, debug and test environ-
ment.

666

-

FIGURE 1-I, Map of Traditional System Development Process to lntegrated CASE Environment Took
and Method.

The Rational Environment is comprised of an intc-
grated set of tools used to design, code, tcst, integrate,
and manage an Ada system. An X-Windows inter-
face allows the software developer to access the Ra-
tional environment from his RISC System/6000TM
workstation.

At software requirements release time, which signals
initiation of high level software design and subse-
quent software design, the graphical requirements
and associated database developed on the RISC
System/6000TM workstations are electronically trans-
ferred to the Rational Coprocessors using the Ra-
tional Teamwork Interface (RTI). This interface
provides an automated, paperless requirements
transfer from systems engineering to software devel-
opers. The RTI, coupled with the Rational X-
Windows interface and the graphical nature of the
teamwork@ tool, provides an important require-
ments traceability capability across the software de-
velopment lifecycle.

As originally presented in Figure 1- 1 and further il-
lustrated in Figure 1-3 on page 5, requirements
traceability is available starting at the Requirements
Analysis phase of the project and continuing through
the software test phase. Traceability is especially
important at software requirements release time,
when requirements are translated to High Level De-
sign (IiLD). Upon completion of requirements

transfer across the RTI, the Rational Environment
provides traceability from the Rational-resident de-
sign information back to the teamwork@ require-
ments. This capability allows systems and software
engineers to simultaneously view lower level textual
design information and its associated higher level
graphical requirements at their RISC
System/6000T" workstations. The multimedia
presentation of requirements and design information
enhances communications between systems engi-
neers and software designers.

The Rational Design Facility (RDF), another com-
ponent of the Rational Environment, works with
RTI to automate the production of
Don-STD-2 167A documentation. An extensive
Configuration Management and Version Control
(CMVC) system in the Rational environment can
control configuration management for the
teamworm requirements database as well as the
Rational-based design information, and is accessible
on the Local Area Network. In essence, the Rational
Environment not only strongly supports project level
ConGguration Management, but also automates
many tasks normally associated with Software
Quality Assurance (SQA) organizations. In addition,
there is an Ada-sensitive syntax and semantics-
directed editor and program traversal tools, as well
as facilities to support remote or cross development

667

FIGURE 1-2. integrated Software Development Environment

for an Ada system during Integration and Test (I&T)
activities.

Software development method

This integrated set of hardware and software CASE
tools is capable of implementing several different
development methods, including The CASE Real-
Time MethodTM. Based on the concepts of Objects,
Classes and Inheritance, this Method is a structured,
disciplined approach that yields object-oriented re-
quirements and design through the performance of
Domain Analysis and various modeling techniques.

668

Domain Analysis seeks to guarantee reuse of re-
quirements, design and software by capturing know-
ledge about a family of systems within a given
application domain versus developing an individual
system in isolation. The product of domain analysis
is a Domain Model, which contains a complex set
of both static and dynamic aspects of family of sys-
tems under examination. However, due to the broad
scope of the Domain Model, and its lack of imple-
mentation detail, Specification and Design models
must be extracted to guide creation of individual
systems.

The Specification model transforms the set affamily
information to a specification for a single system.

o Requlments Analysls
- TIraarbility from

CUatom8t

trrmork
Rmquirrrcrat. to

D a t r b r 8 m

o Soffware Deslgn
- Trrarmbility

from tmuawork

to S o f t w r r a
mquirrrmtr

-8iglJ

UadarlyiPg Trahno lagy Providmm
o Siaglo Syrtrr Inrgcr
o Tool Coanmiartioam
o Lifoayalr T r r o r a b i l i t y

I . I I * U 9

o Code and Test
- Trramrbility
from h m i g a
to Codm aad
Trmt P l m m

FIGURE 1-3. Single System image and Full Requirements Traceability Is Provided Across Soitware
Development Lifecycle

The Specification model defines the implementation
boundary, indicating the hardware and software
codiguration items to be developed. The Design
model then translates the Specscation model to a
design, repackaging the information to reflect the
implementation’s particular hardware and software
environment and setting the stage for detailed soft-
ware design.

Upon completion of these successive models, the
developer will have examined the software from
Operational, Processing and Physical Views, and
captured the time sequencing of the software, as well
as the functionality of the software and how it is to
be constructed.

As summarized in Table 1-1 on page 6, the Trainer
and Simulation department’s current implementation
of an integrated CASE environment carries a distinct
set of software development advantages and disad-
vantages. Starting with advantages, it is clear that
an integrated set of tools implementing a selected
software development method provides a setting that
enhances comnunications between requirements and
software developers. Over the development lifecycle,
the integrated environment preserves concurrency
between requirements and design while minimizing B

the need for manual paper transfer of software re-
quirements between systems and software organiza-
tions. In total, more time and energy will be available
to the developers to worry about important system
and architecture problems as compared to doc-
umentation generation problems.

CATEGORY DESCRIPTION AIWANTAGES

IURDWARE RISC System/6000TH 9 lntercunnectivity Provides Single Point Access to
' Token Ring Network Tools and Host Services

Owexo BackBone Ring Powerfill Commercial Workvtation

On the negative side, though CASE products have
been the focus of much debate for some time in
technical publications, the tools are still somewhat
immature, with limited language support. The buyer
must beware of marketing hype that oversells a tool's
true capabilities. As truly integrated tools are not yet
available, attempting to interconnect equipment and
software from different vendors continues to be
problematic and should be investigated carefully be-
fore assuming that such tools will work together as
advertised.

DISADVANrAGES

Eleterogeneous Hardware and Operating Systems
Mix Complicates Integration and use.

Lastly, regarding Wards CASE Real-Time
MethodTM, it is our experience that this approach,
as well as others, is "front-end loaded" in a number
of areas. First of all, its users must receive up-front
education on how to use the method and obtain re-
sults that can be applied in the user situation. Also,
management support is required to allow adequate
schedule at program startup for the front-end domain
analysis; it is important to note that, typically, this
schedule is not allocated by a customer at program
start. However, without the domain analysis the
entire method is weakened and results cannot be
predicted.

Graphical Orientation
Superb Ada Development Environment
Computer-Assisted Requirements Tractability
and Transfer to Software Developers
' Computer-Assisted 1)ocumentation

Automated Method Suoaort

Once actual system development begins, a brief pe-
riod of follow-up methods consultation is also re-
commended to achieve maximum advantage of the
method's impact on the development process.

Immature Tools
Tool Interfaces Not Fully Integrated'
1001 Expectations Different From Reality
Uni-language support

and 9370 Processor

' Rational Development
TOOLS Cadre teamwork@ t Environmenl

Ward's CASE Real-Time 1 1 MethodT"
Provides Software Design Prainework
Structured Process
Supports Reuse and Pmtotypinp
Objed-Oriented

Front-End Loading Must Re Fadnred Into De-
velopment Schedule and Cost
Requires Personnel Training
Requires Startup Consultation fin Inexperienced
1 I<.=**

FUTURE DIRECTIONS

Future trends in CASE hardware, tools and methods
indicate that product offerings will build on current
advantages and close the gap on current disadvan-
tages. Ultimately, the current functionality provided
by multiple standalone tools will be integrated into
vendor team solutions that will provide a seamless
requirements, design and code environment. The
integrated tools will provide human-engineered
graphical front-ends. Once graphical requirements .
are created, the tools will allow simulation of these
requirements, providing designers with early feedback
on the validity of their requirements. Once the sim-
ulation verifies requirements correctness, the re-
quirements will be translated to levels of design and,
ultimately, to the finished software product. Full re-

quirements traceability will be preserved at all levels
of detail, and automatic documentation production
will be provided.

This trend, though tinted with a futuristic flavor, is
beginning to be seen in the latest CASE tool offer-
ings. It is our intent to monitor new product releases
and, as opportunities arise, upgrade our existing
CAW, environment to strive for as highly automated
a software development process as possible.

CONCLUDING REMARKS

Changes in a traditional software development ap-
proach are not made without justification, as any
change requires retraining and adds some level of risk
to future projects.

The Training and Simulation department's goal,
primarily driven by a training system contract op-
portunity, was to create an integrated CASE envi-
ronment that would take advantage of emerging
technology and software development methods and
yield higher software quality and productivity.
Though the front-end personnel training and domain
analysis add additional costs, we believe these can
be amortized over the development lifecycle and fu-
ture contracts. By automating the currently manual
transition from software specification to design and
code, removing the schedule impact and interpreta-
tion problems associated with these transitions, and
striving to make the day-to-day handling of paper
requirements specifications obsolete, we believe the
resultant software development productivity and
quality will more than offset this front-end impact.

ACKNOWLEDGMENTS

We wish to acknowledge the contributions of Mr.
Richard Saxton for his efforts in implementing the
Owego Integrated CASE Environment.

References
1. Paul T. Ward, "The CASE Real-Time CurriculumT"",

Course Notes, Software Development Concepts, New York,
NY (1989).

2. David P. Wood, William G. Wood, "Comparative Evalu-
ations of Four Specification Methods for Real-Time Sys-
tems", Carnegie-Mellon University, Software Engineering
Institute Technical Report, 1989.

3. Rational Design Facility: Cadre Teamwork Interface, Users
Manual (1989).

4. Cadre teamworm CORE Product Training Workbook
(1 989).

5 . J.M. Sagawa, "Repository Manager Technology", 1BM Sys-
tems Journal 29, No. 2 , pp.209-227 (1990).

Peter 13. Lirckey IBM Federal Sector Division, Rt. 17C, Owego,
NY 13827. Mr. Luckey received the M.S. degree in Computer
Science from Purdue University, West Lafayette, IN, in 1983 and
the R.S. degree from fioughton College, Houghton, NY, in
1974. Since 1983 he has been with the Software Engineering or-
ganization of IBM's Federal Systems Division in Owego, NY.
Throughout his tenure with IBM, Peter has been involved with
the insertion of software engineering technologies, (including
Ada, Object-Oriented Design, Software Reuse, and CASE), into
Owego's software development process. Most recently a software
engineer on the Special Operations Forces Aircrew Training
System (SOF ATS) project, he is a member of the Association
for Computing Machinery and SIGAda He is also an adjunct
professor at the State University of New York in Ringhamton,
N Y , teaching Software Engineering.

Rolvert M. Pittman 1BM Federal Sector Division, Rt. 17C,
Owego, NY 13827. Mr. Pittman received the B.S degree in
Electrical Engineering from Purdue University, West Lafayette,
I N , in 1978 and the M.S. degree in electrical engineering from
Renssellaer Polytechnic Institute, Troy, NY, in 1982. Since 1983
he has performed Systems Engineering for the IRM Federal
Sector Division in Owego, NY. He has been invo!ved in a full
range of Systems Bngineering activities, from front-end business
acquisition to contract performance, on projects ranging from
classified military communications systems to automated manu-
facturing systems. Most recently an advisory engineer on the
Special Operations Forces Aircrew Training System (SOP ATS)
project, he is a member of the Institute of Electrical and Elec-
tronics Engineers and an adjunct professor at the State University
of New York in Binghamton, NY.

671

