
COMPUTER-AIDED SOFTWARE ENGINEERING'S IMPACT ON THE 

SOFTWARE DEVELOPMENT PROCESS: AN EXPERIMENT 

Mary J. Granger Roger Alan Pick 

College of Business Administration 
University of Cincinnati 

College of Business and Management 
Morgan State University 

Baltimore, Maryland 21239 USA, Cincinnati, Ohio 45221-0130 USA 

ABSTRACT 

Organizations today invest enormous 
resources in Computer-Aided Software 
Engineering (CASE) technologies with the 
hope of gaining significant increases in 
programmer productivity. In an 
empirical study, eleven three-person 
teams, composed of undergraduate 
Information Systems majors, developed 
versions of the same software system, a 
Pascal Pretty Printer; four teams used 
the same CASE tool and seven teams did 
not use any CASE tools. 
results of this study are: 1) most of 
the CASE projects were coded in less 
time than the non-CASE projects; and 2) 
all of the CASE projects met more of the 
requirements than the non-CASE projects. 
Each of these results was a 
statistically significant effect. 

The major 

INTRODUCTION 

CASE (Computer-Aided Software 
Engineering) is perceived by many 
software developers as the answer to 
their software problems and the 
'Isoftware crisist' that has plagued the 
computer industry [8, 18, 211. The term 
Ilsoftware crisis" describes the current 
state of software development: systems 
that do not meet the client's 
specifications; systems that are over 
budget and/or late; systems that are 
extremely complex; and systems that are 
difficult to maintain. The increased 
demand for applications software has 
created an estimated backlog of four 
years [31]. 

One reason for the software crisis is 
that programmer productivity has only 
been growing at a rate of 5% per year. 
The last major breakthrough in 
programmer productivity was in the 1950s 

0073-1 129/91/0000/0028$01 .OO 0 1991 IEEE 

with the introduction of language 
compilers [U]. Programmer productivity 
has been a pressing issue for Management 
Information System managers for the last 
four or five years [15]. Techniques for 
improving programmer productivity 
include structured programming, 
structured design methods, requirements 
analysis.techniques, and software 
engineering. CASE is considered a 
software development environment that 
supports these methods and processes. 
CASE, the automation of software 
development [19, p. 31, is considered a 
major step toward improving programmer 
productivity and therefore a partial 
solution to the software crisis. 

Very little research about the 
effectiveness of CASE technology exists 
[7, 231. Although recent studies [l, 
101 report increased programmer 
productivity, few formal measurements 
exist. Other affirmatory reports such 
as [17] and [9] have come from the 
developers of commercial products. [19] 
reports programmer productivity gains at 
DuPont but does not indicate where or 
how these increases were developed. 
Another practitioner article [28] 
discusses increased programmer 
productivity after adoption of CASE 
technology, but these articles are 
anecdotal and lack quantitative 
productivity measures. often 
productivity gains are reported using 
the actual implementation time with CASE 
and the estimated implementation time 
without CASE. 

The only empirical study that we are 
aware of is one done by Norman and 
Nunamaker, which is reported in the 
Communications of the ACM 1231, the 
Proceedings of the Ninth International 
Conference on Information Systems [22] 
and the Proceedings of the Twenty-second 
Annual Hawaii International Conference 
on Systems Science [24]. The study used 
a questionnaire to evaluate managers' 

28 



perceptions of the relative productivity 
improvement of a specific CASE tool's 
components over manual methods. They 
did not attempt to measure the degree of 
productivity improvement using CASE 
technology. 

This research fests the belief that the 
use of CASE technologies increases the 
productivity of the system 
analyst/programmer. That is, an 
improved product is produced in the same 
amount of time or the same product is 
produced in less time. 

The formal hypothesis used to test this 
belief is: there is no difference in 
the productivity of the system 
analyst/programmer who uses CASE 
technologies and the productivity of the 
system analyst/programmer who does not 
use CASE technologies. 

THE EXPERIMENT 

Excelerator is the CASE tool selected 
for this research. Excelerator was 
named Software Product of the Year in 
1987 by the American Federation of 
Information Processing Societies [14] 
and also has been the most widely used 
CASE product [ll]. 

This study is a controlled experiment 
using student subjects in a software 
engineering course implementing a 
classroom project. A classroom project 
is used for two reasons. First, 
controlled experiments in an 
organizational environment are too 
costly and time consuming [20]. Second, 
a better experimental design can be 
achieved in a classroom setting than in 
a commercial setting. 

There are a number of benefits to 
conducting the study in a classroom 
setting. commercial projects will not 
be replicated by software developers 
because of financial and practical 
considerations. Given two commercial 
projects, neither the system nor the 
programming teams are the same. Data 
collection is easier with student 
subjects; practitioners are reluctant to 
change their way of doing business [6]. 
This means it is difficult to isolate 
and evaluate the effect of the 
technology being studied [4, 131 21- 

In this experimental study, the same 
task was given to a number of teams Of 
university students enrolled in two 
sections, across two quarters, of an 
Information Systems course titled 
Software Engineering. Students are a 
convenient sample and since these 
students are Information Systems majors, 

they are also a representative sample of 
future users of CASE technologies. 

The main objective of the software 
engineering course is for the student to 
gain knowledge of structured methods and 
to become familiar with Ilprogramming in 
the large" by working in a programming 
team environment and implementing a 
small (600-2000) line system. Although 
600-2000 lines is not l'programming in 
the large,Ig this is an appropriate size 
for the limited amount of time in a 
ten-week quarter. The students used 
structured methodologies to implement 
and complete the assigned project. 

THE TASK 

The experiment was conducted over two 
quarters using the same task each 
quarter. The project consisted of 
designing, coding, testing, debugging, 
and documenting a Pretty Printer for 
Pascal programs. The project was of 
moderate difficulty and length; it was a 
non-trivial problem, resulting in an 
average of 1500-2000 lines of Pascal 
source code. 

As defined for the students' project, a 
Pretty Printer was a computer program 
that reformatted computer programs [5, 
25, 301. The new reformatted version of 
a computer program should be easier to 
understand and read. 

The original version of the computer 
program was stored in a text file on a 
Digital Equipment Corporation VAX 6350 
under the VMS operating system and was 
treated as input in the form of 
character strings. 
purpose nor the responsibility of the 
Pretty Printer to detect syntax errors. 
The Pretty Printer assumed that the 
input was a text file containing a 
syntactically correct Pascal program. 
The output also was to be a 
syntactically correct program with the 
same execution behavior as the input. 
The formatting activities the Pretty 
Printer should include were adding or 
modifying appropriate line breaks, 
spacings, and indentations; 
alphabetizing variable names and 
constant names within their respective 
sections; and capitalizing reserved 
words. The final modified Pascal 
program was either stored in another 
file, displayed on the screen, or 
printed. Any combination of these three 
options could be specified by the user 
of the Pretty Printer. 

The instructor manually prepared 
identical detailed requirements and gave 
them to the students at the beginning of 

It was not the 

29 



each quarter. The requirements were not 
prepared using CASE technologies; use of 
CASE might have provided an advantage to 
the subjects using CASE and have a 
negative impact on the non-CASE 
subjects. All students had available 
the same computer resources, and the 
same programming implementation 
language, the same debugging tools. 
They were constrained by the ten-week 
quarter time period. 

The task was divided into two major 
phases, design and coding, with the 
emphasis on the design phase (first five 
weeks). Students in the Spring 1989 
quarter (control group) did not use CASE 
technologies while they learned 
structured methodologies; those in. the 
Autumn 1989 quarter (treatment group) 
used CASE technologies. 

'THE SUBJECTS 

Participants in the study were 
junior-level Information Systems majors 
enrolled in the Software Engineering 
course in the day program of the College 
of Business Administration of the 
University of Cincinnati. ~ l l  students 
enrolled in the two sections 
participated. In order to enroll in the 
course the students must have completed 
all their freshmen-level and 
sophomore-level Information Systems 
courses: Introduction to Data 
Processing; Principles of Structured 
Programming: COBOL I; COBOL 11; and Data 
and File Structures. The structured 
programming concepts introduced in these 
previous Information Systems courses are 
formalized and expanded within the scope 
of a larger project in the Software 
Engineering course. 

Almost all of the students were familiar 
with the computer system and the 
implementation language. Most previous 
Information systems programming courses 
used the VMS operating system and two of 
the prerequisite courses, Introduction 
to Data Processing and Data and File 
Structures, required the use of Pascal. 
The students were not familiar with a 
team concept of programming nor formal 
structured software development 
methodologies. Teams worked 
independently in both quarters, with no 
collaboration among teams, during all 
phases of project . 
During the Spring 1989 quarter, the 
student teams implemented a Pretty 
Printer using structured methods, 
including top-down design and structured 
programming [32, 261. They did not use 
any of the integrated CASE technologies. 

All of the teams decided, independent of 
class instruction, to learn and use FLOW 
[27] for their structure charts and data 
flow diagrams. FLOW is a graphics word 
processor. All the checking and 
verifying within the data dictionaries, 
structure charts, and data flow diagrams 
was done "manually1' (without any 
computer aided integration). These 

seven three-person teams were the 
control group or benchmark for the 
experiment. 

During the following Autumn 1989 
quarter, the same task was implemented. 
Student teams received the same 
instruction and used the same structured 
methodologies as in the Spring 1989 
quarter but also were required to use 
the available integrated CASE 
technologies during the design phase. 

TEAM COMPOSITION 

In a previous study using student teams, 
Rombach [29] ranked students on their 
educational performance (grades), 
experience (industry), and relative 
programming talent. In the present 
study, educational performance and 
programming talents were combined as the 
students' ability and were used in 
conjunction with work experience in 
determining team composition. Each team 
had a "more-experienced*' member , a 
'Iless-experienced" member, and an 
19inexperiencedn1 member. 
llMore-experiencedl'. was defined as either 
several quarters of co-op work 
experience or more than a year of 
part-time work and familiarity with 
several operating systems. 
llLess-experienced'n students had one or 
two quarters of co-op experience or less 
than one year of part-time work and 
familiarity with one or two operating 
systems. The students classified as 
llinexperiencedl' had little or no 
practical work experience; most of their 
knowledge about the field had been 
acquired from their courses. 
Demographic data and information about 
the level of experience were collected 
using a pretest questionnaire. The 
level of experience was evaluated by the 
instructor, a graduate student, and a 
Senior Information Systems major 
(grader). There was no significant 
difference in either the age or grades 
between the control group and treatment 
group. The two groups were similar in 
course background and work experience. 
Data regarding students' ability was 

also gathered from several of the 
students' previous instructors and the 
grades (Basil1 1981) earned in their 
prerequisite IS courses. As long as the 



teams maintained this mix of experience 
and ability, some consideration was 
given to students' preferences in regard 
to team members. 

In the Spring 1989 quarter there were 
seven three-person teams, and in the 
Autumn quarter there were three 
three-person teams and one four-person 
team. The four-person team had one 
"more- experienced" member , one 
"less-experienced" member and two 
inexperiencedB1 members. This team was 
formed originally as a three-person 
team, but two students from another team 
dropped the course and the remaining 
student had to be placed on a team. 

THE CLASSROOM PROCESS 

Students were given the specifications 
for the Pretty Printer during the first 
week of class. Those in the treatment 
group (those that were required to use 
Excelerator) were told that they should 
start learning how to use that software. 
Those in the control group (without 
Excelerator) were told that they could 
use any software that was available; 
there were no restrictions. However, 
neither Excelerator nor other integrated 
CASE products were available. class 
lectures for the first four weeks of the 
quarter covered structure charts, data 
flow diagrams, data dictionaries, module 
specifications, and interface 
specifications. Time for questions was 
allotted at the beginning of each class 
period; there were two 75-minute class 
meetings per week. 

During the Autumn quarter, any questions 
on Excelerator were answered in class. 
However, except for distributing 
passwords and project designations, the 
only class time spent on Excelerator was 
that time used to answer students' 
questions. Designs were collected, 
graded, and returned during the fifth 
week. Included in the design package 
were the structure charts, data flow 
diagrams, data dictionaries, module 
specifications, interface 
specifications, and a brief description 
of the team's design with an explanation 
of a Pretty Printer. 
then began. Class lectures concentrated 
on modularity, cohesion, coupling, 
fan-in, fan-out, and external procedures 
in Pascal on the VAX. There was some 
discussion of external Pascal procedures 
on the VMS operating system and VMS 
command files. 

The coding phase 

The project was handed in during the 
tenth week of the quarter. Required in 
this phase were the Pascal code, a 
user's manual, a programmer's manual, 

and any changes made to the original 
design with an explanation as to why the 
changes were necessary. 

A history effect on the autumn quarter 
from the spring quarter probably did not 
occur. Any communication across 
quarters probably did not have a 
significant impact on the autumn 
projects. Also, students tend not to 
plagiarize on large scale projects. 
Also, students tend not to plagiarize on 
large scale projects. It has been 
observed by the faculty that, while 
students may give students in a 
following quarter a small, several 
hundred line program, they are not 
willing to do the same with a full- 
quarter project. The instructor had 10 
years experience teaching Information 
Systems courses and one year experience 
teaching Software Engineering. Any 
improvement in instructor performance 
across quarters was likely to be 
marginal. 

DATA COLLECTION 

The development process was evaluated 
using the data collected during the 
design phase and information collected 
automatically during the implementation 
phase. The product was evaluated using 
a number of software metrics. Data 
involving the design phase was collected 
using weekly progress reports, minutes 
of team meetings, and personal logs. 
The student logs contained a record of 
all the activities associated with the 
Software Engineering course and the 
amount of time spent on each activity. 
This information was recorded daily or 
whenever the students worked on the 
project . 
Students were told that their logs 
should be complete so that if someone 
would replace them on the project, their 
logs could serve as an introduction and 
a clarification of the work already in 
progress. 
how and why things were being done. 

In order to prevent the logs being 
written at the end of the quarter and 
consequently presenting an inaccurate 
picture of the individual processes, the 
logs were date-stamped weekly. The 
students' logs for both quarters were 
examined and the reported individual 
times and group times spent for each 
phase of the project were tallied. 

Data from the coding phase were 
automatically collected. Several 
programs had been created that collect 
this data without the students' 
interaction. The students knew that 

The log would explain both 

31 



data about their project was being 
collected, but they did not know how or 
why. Measures were taken to insure 
confidentiality: after the data was 
collected and the grades for the quarter 
assigned, the data was not associated 
with identifiable individuals. Each 
logon, compilation, link, run, and 
logoff was recorded. The total amount 
of time on the system and the counts for 
the compilations, links, and runs were 
used to determine whether use of CASE 
technology reduced the number of 
iterations necessary to implement the 
system. This data was collected for 
each individual student and combined to 
form the group totals. 
individual debugging and coding styles, 
some individual differences were 
introduced during this phase of the 
project. A senior in Information 
Systems evaluated the projects for 

Due to 

completeness. 
projects to evaluate, but he did not 
know which projects were developed using 
CASE and which were developed without 
CASE. The seven projects developed 
without CASE were randomly merged with 
the four that used CASE. The instructor 
kept a key to the projects. 

The original twentyifour specifications 
were used to determine the completeness 
of each project. On each of the 
different specifications, a 0 - 1 - 2 
scale was used to record the 
completeness. A score of ' 0 '  indicated 
that no attempt was made to accomplish 
that specification. A score of '1' 
indicated that some attempt was made, 
but it was not a totally successful 
attempt. A score of ' 2 '  indicated a 
totally successful attempt at a 
particular specification. Once the 
scales were returned to the instructor, 
they were connected with their 
appropriate group. 

RESULTS 

Discriminant analysis (SPSSX) used eight 
time variables and eight size variables 
for each team. The time variables were: 
the total time reported by the teams: 
the reported time spent on design: the 
reported time spent on coding and 
debugging: the number of team compiles: 
the number of team links: the number of 
team runs: the number of team logons: 
and the total team time spent on the VMS 
system. The size variables were: the 
number of lines of code: the number of 
comments: the total number of functions 
and procedures: Halstead's length: 
Halsteadls estimated length: Halstead's 
implementation level: Halstead's volume: 
and Halstead's vocabulary [ 3 3 ] .  T-tests 
tested for significant differences in 
the means (control group versus 

He was given all eleven 

treatment group) for each variable. 
Table 1 and Table 2 show the levels of 
significance (P values) for each of the 
variables for the time and size 
categories respectively. 

The P values obtained from the t-tests 
indicate there is a significant 
difference for some of the variables in 
the time category. The number of runs 
and links are significant at a 0.05 
level: the amount of time spent logged 
on to the VMS operating system is 
significant at the 0.05 level: and the 
number of compiles is significant at the 
0.10 level. The other four variables 
are very close to the 0.10 level of 
significance. 
of the t-test for such a small sample 
size, these values should also be 
considered to have large practical 
significance. 

In view of the low power 

-VEL OF 

NAME 
TOTDES 
TOTCOD 
TOTTME 
GCOMPL 
GLINKS 
GRUNS 
GTIME 
GLOGON 

TABLE 1 

SIGNIFICANCE (P VALUES) AND MEANS 
TIME VARIABLBS (ALL TEAMS) 

P VALUES 
0.1473 
0.1552 
0.1091 
0.0589 
0.0190 
0.0174 
0.0326 
0.1164 

MEANS 
CONTROL 
GROUP 
81.71 
122.71 
204.43 
3912.71 
1057 -86 
1023.14 
210.86 
220.29 

MEANS 
TREATMENT 
GROUP 
50.00 
23.50 
73.50 

1652.50 
559.75 
536.25 
164.00 
165.00 

TABLE 2 

LEVEL OF SIGNIFICANCE (P VALUES) AND MEANS 
SIZE VARIABLES (ALL TEAMS) 

Loc 
CMMNTS 
MODULES 
LENGTHN 
ESTN 
IMPLEVEL 
VOLUME 
VOCAB 

P VALUES 
0.3296 
0.7259 
0.2421 
0.4608 
0.7508 
0.1878 
0.5016 
0.7767 

MEANS 
CONTROL 
GROUP 
17 51.00 
188.15 
34.00 

4655.?1 
1567.71 

36553.71 
215.43 

0.006 

MEANS 
TREATMENT 
GROUP 
1437.50 
221.00 
25.75 

3694.75 
1398.25 

28439.25 
198.75 

0.008 

32 



None of the size variables are 
significant. 
surprising since all the projects were 
designed and coded to meet the same 
requirements. 

A totally complete system, one that 
completely met all the requirements for 
all the Pretty Printer functions would 
have a rating of 48. Figure 1 indicates 
the level of completeness for the eleven 
projects. Figure 2 shows the percentage 
of completeness. The four projects, all 
from the control group, that received a 
' 0 '  rating for all 24 specifications had 
run time errors caused by either a stack 
dump error or an access violation error; 
none of the projects had compile errors. 
The three 
control group were each approximately 
33% complete. The four treatment group 
projects ranged from 449 to 75% 
complete. using the mean ratings for 
both groups, all teams, the p value was 
0.002. Omitting those teams that had 
run time errors, the p value was 0.045. 
Both values were significant at the 0.05 
level. 

This should not be too 

remaining projects from the 

CONCLUSION 

There was a significant difference in 
the time required to code the system. 
The treatment group, CASE, used less 
time than the control group, non-CASE. 
The size of the products were not 
significantly different; however, the 
level of completeness of the systems was 
significantly different. The CASE group 
developed systems that were more 
complete than systems developed by the 
non-CASE group. 

If productivity is defined as producing 
the same product in a lesser amount of 
time, it can be concluded that the 
productivity during the coding phase was 
increased by the use of CASE 
technologies during the design phase. 
Since the CASE group also produced a 
more complete project, we can conclude 
that productivity was also increased 
because a 'better' product was developed 
in less time. The CASE-developed 
systems were better able to meet the 
specifications in less time than the 
non-CASE developed systems. The 
hypothesis that there is no difference 
in the productivity of the system 
analyst/programmer who uses CASE 
technologies and the productivity of the 
system analyst/programmer who does not 
use CASE technologies is proven false; 
there is a difference in the 
productivity. Therefore, our original 
belief is supported. 

SUHMARY/IMPLICATIONS 

Information Technology managers should 
be encouraged in their quest for 
increased programmer productivity. Most 
of the students majoring in Information 
Systems will be the applications systems 
analysts of tomorrow; therefore, the 
results may generalize to the entire 
population of professional system 
analysts. 

It should be noted that the students in 
the Autumn quarter were novices in CASE 
and in software engineering; novices are 
not always as successful as seasoned 
users [3]. Although the subjects were 
novices with CASE technologies, they had 
a significant improvement in 
productivity. However, the sample size 
was small and the project was not a true 
"programming in the large" project. 

Only one CASE tool, Excelerator, was 
used and the authors would like to 
repeat the experiment using different 
CASE products. The results from only 
one task are reported and the authors 

33 



are currently collecting data for 
another project. Future research and 
analysis is planned to include the data 
from additional projects and tools. 

BIBLIOGRAPHY 

[l] Acly, Ed (1988)  "Looking Beyond 
CASE." IEEE SOFTWARE, March 1988 ,  39-43. 

121 Attewell, Paul and Rule, James 
(1984)  Womputing and Organizations: 
What We Know and What We don't Know,I@ 
COMMUNICATIONS OF THE ACM, Vol 27 ,  No. 
32, December 1984 ,  1184- 1192.  

[ 3 ]  Basili, Victor R. and Reiter, Robert 
w. (1981)  "A Controlled Experiment 
Quantitatively Comparing Software 
Development Approaches.ii IEEE 
TRlW3Cl'IONS ON SOFTWARE ENGINEERING, 
Vol. SE- 7 ,  No.3, May 1981,  299-320. 

143 Boehm, Barry w., (1981)  SOFTWARE 
ENGINEERING ECONOMICS, Prentice-Hall, 
Inc., Englewood Cliffs, New Jersey. 

[ 5 ]  Cameron, Robert D. (1988)  I~AII 

Abstract Pretty Printer. IEEE 
SOFTWARE, November 1988 ,  61-67. 

[ 61 Card, David (1988)  Wajor Obstacles 
Hinder Successful Measurement.@8 IEEE 
SOFTWARE, November 1988,  8 2 , 8 6 .  

[ 7 ]  Carey, Jane M. and McLeod, Raymond 
(1988)  W s e  of System Development 
Methodology and JOURNAL OF 
SYSTEMS MANAGEMENT, March 1988,  Vol. 39 ,  
NO. 3 ,  30-35. 

[ 8 ]  Chikofsky, Elliot J. (1988)  
"Software Technology People Can Really 
Use." IEEE SOFTWARE, March 1988,  8-10. 

[ 9 ]  Chikofsky, Elliot J. (1989)  Waking 
CASE Pay Off." CIO, February 1989 ,  Vol. 

[ l o ]  de la Torre, Jose. (1988)  
"Quality-assured Software in 4GL/CASE. 'I 
BUSINESS SOFTWARE REVIEW, March 1988,  
Vol. 7 ,  NO. 3, 30-33. 

[ 111 Fersko-Weiss, Henry (1990)  "CASE 
Tools for Designing Your Applications," 
PC MAGAZINE, Vol. 9 ,  NO. 2 ,  January 30 ,  
1990,  213-251. 

[ 1 2 ]  Frenkel, Karen A. (1985)  "Toward 
Automating the Software- Development 
Cycle.  COMMUNICATIONS OF THE ACM, Vol. 
28 ,  No. 6, June 1985 ,  578-589. 

2 ,  NO. 5 ,  12-16. 

[13 ]  Glass, R. L. (1982)  Wodern 
Programming Practices: A Report from 
Industry", Prentice-Hall, Englewood 
Cliffs, New Jersey, 1982 as cited in 
Abdel-Hamid, Tarek K. (1988)  
"Understanding the "90% Syndrome" in 
Software Project Management: A 
Simulation-Based Casestudy", THE JOURNAL 
OF SYSTEMS AND SOFTWARE, August 1988,  

[ 1 4 ]  Hanna, Mary Alice (1990)  Wove Is 
On To Tie Vision To Information 

SOFTWARE MAGAZINE, Vol. 1 0 ,  
No. 1, January 1990,  39-45. 

[ 1 5 ]  Hartog, Curt and Herbert, Martin 
(1986)  "1985 Opinion Survey of MIS 

Managers : Key Issues , MIS QUARTERLY, 
December 1986 ,  p. 351-361. 

[ 1 6 ]  Humphrey, Watts S. (1989)  MANAGING 
THE SOFTWARE PROCESS. Addison-Wesley 
Publishing Company, Reading, 
Massachusetts. 

[ 1 7 ]  Martin, Charles F. (1988a)  "Getting 
CASE in Place. BUSINESS SOFTWARE 
REVIEW, Vol. 7 ,  No. 5 ,  April 1988,  

319- 330.  

20-25. 

[ 1 8 ]  Martin, Charles F. (1988b) 
"Second-Generation CASE Tools: A 
Challenge to Vendors." IEEE SOFTWARE, 
March 1988 ,  46-49. 

[ 1 9 ]  McClure, Canna (1989)  CASE IS 
SOFTWARE AUTOMATION. Prentice-Hall, New 
Jersey. 

[ 2 0 ]  Myers, Glenford J. (1978)  "A 
Controlled Experiment in Program Testing 
and Code Walkthroughs/Inspections", 
COMMUNICATIONS OF THE ACM, Vol 21 ,  No. 
9 ,  September 1978 ,  760-768 as cited in 
Abdel- Hamid, Tarek K. (1988)  
IWnderstanding the "90% Syndrome" in 
Software Project Management: A 
Simulation-Based Case Study", THE 
JOURNAL OF SYSTEMS AND SOFTWARE, August 
1988,  319-330. 

[ 2 1 ]  Nejmeh, Brian A. (1988)  I1Designs on 
Case." UNIX REVIEW, Vol. 6 ,  No. 11, 
November 1988 ,  45-50. 

[ 2 2 ]  Norman, Ronald, J. and Nunamaker, 
Jay F. (1988)  "An Empirical Study Of 
Information Systems Professionals' 
Productivity Perceptions of CASE 
Technology.Ig PROCEEDINGS OF THE NINTH 
INTERNATIONAL CONFERENCE ON INFORMATION 
SYSTEMS, Minneapolis, Minnesota, 
November 30-December 3, 1988 ,  eds. 
DeGross, Janice I. and Olson, Margrethe 
H., 111-118. 

34 



E231 Norman, Ronald, J. and Nunamaker, 
Jay F. (1989a) 8 8 ~ E  Productivity 
Perceptions of Software Engineering 
Professionals." COMI"ICATI0NS OF THE 
ACM, Vol. 32, no. 9, September 1989, 
1102-1108. 

[24] Norman, Ronald J. and Nunamaker, 
Jay F. (1989b) "Integrated Development 
Environment: Technological and 
Behavioral Productivity Perceptions,I' 
THE 22ND HAWAII INTERNATIONAL 
CONFERENCE ON SYSTEM SCIENCES, Vol. 11, 
ed. Shriver, Bruce D., January 3-6, 
1989, 996-1003. 

[25] Oppen, Derek C. (1980) 
ggPrettyprinting.*l ACM TRANSACTIONS ON 
PROGRAMMING LANGUAGES AND SYSTEMS, Vol. 
2, No. 4, October 1980, 465-483. 

[26] Page-Jones, Meilir (1988) THE 
PRACTICAL GUIDE TO STRUCTURED SYSTEMS 
DESIGN. Yourdon Press, Englewood Cliffs, 
New Jersey. 

[27] Patton (1986). FLOW CHARTING 11+ 
[Computer Program]. (Version 2.40B). 
San Jose, California: Patton & Patton 
Software Corp. 

[28] Rochester, Jack B. (1989) "Building 
More Flexible Systems. I/S ANALYZER, 
Vol. 27, No. 10, October 1989, 1-12. 

[29] Rombach, H. Dieter (1987) "A 
Controlled Experiment on the Impact of 
Software Structure on Maintainability.Il 
IEEE TRANSACTIONS ON SOFTWARE 
ENGINEERING, Vol. SE-13, No. 3, March 
1987, 344-354. 

[30] Rubin, Lisa F. (1983) 
"Syntax-Directed Pretty Printing - A 
First Step Towards a Syntax-Directed 
Editor." IEEE TRANSACTIONS ON SOFTWARE 
ENGINEERING, Vol. SE-9, No. 2, March 
1983, 119-127. 

[31] Shemer, Itzhak (1987) "Systems 
Analysis: A Systematic Analysis of a 
Conceptual Model," COMMUNICATIONS OF THE 
ACM, Vol. 30, No. 6, June 1987, 506- 
512. 

[32] Yourdon, Edward N. and Constantine, 
Larry L. (1979) STRUCTURED DESIGN. 
Prentice-Hall, New Jersey. 

[33] Halstead, Maurice H. (1977) 
ELEMENTS OF SOFTWARE SCIENCE. Elsevier, 
New York. 

35 


