
CASE AND ITS CONTRIBUTION TO QUALITY

Alan Frazer

CASE And The Software Crisis Originally computer systems were used to improve efficiency by replacing
tasks which previously had required significant paper-based filing systems and significant clerical effort -
hence the term data processing. Soon efficiency systems were complimented with effectiveness systems where
the computer was used to provide key information to assist management with on-going decision making.
Gradually these information systems began to address the needs of higher levels of management within the
organisation resulting in the decision support system and the executive information system.

Today efficiency and effectiveness systems are being complimented by systems for commtitive advanmze
where the system is used to gain the edge on a commtor by providing a new service, drastically reducing
product costs or even creating a totally new market altogether. Initially these started in sectors where
information was a critical commodity such as financial services and travel but has now begun to penetrate
organisations of all shapes and sizes irrespective of their business sectors.

Computer systems which function according to their intended users' requirements are very difficult to create.
Even when they meet users' requirements typically they will have collsumed much more effort to create than
was originally intended and will have been delivered to the user much later than was origudly promised.
These problems are not limited just to the user of the software as the software developer is hm that the
systems they have built are talung much more effort to maintain than was on@y intended.

An accepted statistic is that for every six developers only about one and a half of them are Writing new
systems with the rest maintaining previously written systems. This causes further problems to the user as the
developer's ability to deliver new systems duninishes as their maintenance burden grows. Hence the term
applications backlog - the extent of the systems required by users which developers are unable to supply due
to insufficient resources.

Much effort has been expended over the last forty years into improving the way we develop software systems.
The focus of thls has been on improving our software project management approach, techniques to help us
capture requirements better and mechanisms to reduce the amount of software code which is written. The
latter has concentrated on providing code reduction through high-level languages which make a given line of
code carry out more processing and automation where software code is generated automatically from design
information. Since about 1985 these advances in software development technology have been collectively
referred to as CASE.

Most software commentators would agree that if the "software crisis" is to be abated it will be via the careful
and selective application of appropriate CASE technology.

The CASE Acronym Before we can introduce and define CASE we must first define what the acronym
means. There are a number of different interpretations of the acronym and these include: "Computer
Automated Software Engineering", "Computer Aided Systems Engineering" and "Computer Aided Software
Engineenng".

Alan Frazer is Consultancy Manager with VISION Software Engineering
VISION Software Engineering 2nd Fluor Ulster Bank House Shaftesbury Square Belfast BT2 7DL
Tel: (0232)-313385 Fax: (0232)-313513

6 1 1

Z 1993 The lnstltutlon of Electrical Engineers
Printed and published by the IEE. Savoy Place, London WCZR OBL. UK

The first is inappropriate as the software engineering process will not be automated for many years, perhaps
never. The second is favoured by the Government CCTA as it implies an element of hardware involvement.
However, it is the final definition which is most widely accepted (it is also the definition used by the
Commission of European Communities) and it is the one I will use here.

Definition of CASE The original definition of CASE was a MITOW one and covered only a particular type of
software tool designed to assist the software developer to follow techniques used in the analysis and design
stages of the development. However, a much wider definition of CASE is accepted nowadays and CASE can
be described as "any software tool used to assist a software engineer with any aspect of the software
development process includmg the management and planning activities.".

Thus CASE includes:
Tools to DO the job (e.g. Analysis, Design, Development, Testing)
Tools to MANAGE & CONTROL the job (e.g. Project Management, Configuration Management)
Any Underlying METHODS & TECHNIQUES (e.g. SSADM, DFD, ERD)

and CASE excludes:
General purpose software (e.g. Word Processors, Spreadsheets
Applications software (e.g. Payroll Systems, Stock Control Systems)
"Primary software" (e.g. Compilers)

Usage and ImDortance CASE is used by software houses, computer systems vendors, vendors of non-IT
systems with embedded IT systems (e.g. ABS in cars or hc t ion selection in cash dispensers) and computer
systems users. The CASE market itself is not large (ECU 400 million in Westem Europe in 1991 as
compared to ECU 12 billion spent in Westem Europe in 1991 [l]). However, CASE has a high profile and it
seems clear that it will be key to bringing the software industry out of adolescence and assisting with the
resolution of many of the industry's problems. The market is not large, but CASE is central to many issues in
the industry. Some of the reasons for this are discussed below.

Benefits of CASE The benefits of CASE can be classified into two main areas - productivity gains and
quality gains. Productivity gains are largely achieved by malung the development process more efficient and
the most obvious area where this has happened is in the coding area where code generators or 4th Generation
Languages (4GLs) claim to improve productivity of development (and maintenance if correctly used) by up to
a factor of ten. Quality gains are achieved by ensunng a rigorous and consistent approach to the development
process and by assisting with product assessment at every stage of the development lifecycle. Figure 1 gives
an indmtion of productivity and quality improvements achievable through correct usage of CASE

Figure 1 CASE Based Improvements in Quality and Productivity.

MEASURE OF MEASURED IN CASE IMPROVEMENTS

1 - Development Productivity

2 - Mruntenance Scope

3 - Internal (Process) Quality

1 - External (Product) Quality

5 - External (Product) Quality

FP Per Months Effort

FP Per Developer

Defects per FP

User Discovered Defects

User Satisfaction Surveys

From 10 to 40 FPlM [21

From 500 to 1500 FP [3]

Down to < 4 (31

From 25% to 5% [3]

90% Excellent [3]

FP = Function Point@ measure of size)

6/ 2

CASE and Ouality Five years ago productivity was of paramount importance in software production,
however, now the spotlight is firmly on quality. The IT industry is currently the third largest in the world and
is expected to be number one early next century. Thirty five percent of the EC's 4th Framework Research
funding of 3,900 billion ECU is devoted to information and communication systems. Given this and the EC's
acknowledgement that "I.T. competencies underpin all industry", the current interest in quality becomes
understandable. Furthermore the knowledge that software errors can be enormously expensive and even fatal
serves to increase the demand for quality.

CASE and Product Quality Software production is becoming an ever more complex activity and CASE
tools and techniques are indispensable in delivering a quality product. Listed below are just some of the areas
where CASE helps.

Testing is an established discipline in the software lifecycle and essentially involves reviewing the deliverable
or exercising the code to check for errors or umformity to requirements. Tools can assist with manaBing the
test data, monitoring results from successive versions and even ldeatifying how much of the application has
been checked with the tests employed. Techniques such as regression testmg are also in widespread use.

Configuration management ensures that items in the development project are monitored, updated and
released properly and that more than one developer is not updatmg a design object or code fragment at any one
time.

Metrics provide information on code complexity, errors per lines of code etc. and these can be used to monitor
pre-set site standards. CASE tools are essential for gathering, analysing and storing the metrics data.

CASE and Process Ouality Much effort is currently focused on the software development process following
the acceptance of the maxim that "a quality process will produce a quality product" and many initiatives are
currently underway to certify or to assess and improve the software development process. The most often
used slide in software conferences over the last two years has been the overview of the Software Process
Maturity Model as produced by Watts Humphrey at the Software Engineering Institute in Camegie Mellon
University in the United States. Thls provides an assessment and improvement framework widely accepted
throughout Europe and the States. In addition many development organisations are seelung BS 5750 and
IS09001 certification and the DTI has a TickIT initiative underway to help IT organisations achieve the
BS5750 late mark.

CASE can help improve the development process by ensuring consistency of approach (all staff could be
encouraged to use the same diagramming notations or wdmg standards), by introducing new techniques (such
as Object Orientation whch offers a much improved re-use capability and therefore better use of tried and
tested software modules) and by assisting with project management and control(by use of numerous CASE
tool types such as estimating tools, risk analysis tools, project management tools etc.).

Getting Readv for CASE It should be noted that the introduction of CASE involves cultural and
process/organisatiod issues and cannot be undertaken lightly. However the latest version of Software
Process Maturity (i.e. the Capability Maturity Model) can be used to assess the 'gaps' between CASE plans
and organisational abilities.

6/3

Conclusions CASE is essential ifthe software industry is to meet the demands made of it in the coming years
and its use will be mandatory in producing stable and efficient systems.

Although the initial driving force behind CASE was productivity, the quest for quality will become the
primary factor behind acceptance of CASE. Quality with productivity will be demanded and qualitivity will
become the new buzzword.

Quality will drive the adoption of new CASE tools and techniques, but conversely without CASE quality will
not be actuevable.

References

[I] Source: O W M
[2] The James Martin Productivity Series Volume 1 - High Productivity Technology
[3] Applied Sofhmre Measurement - Assunng Productivity and Quality
by Capers Jones published by McGraw Hill 1991

