
 Procedia Computer Science 9 (2012) 439 – 448

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.04.047

International Conference on Computational Science, ICCS 2012

Literate Program Execution for Reproducible Research and Executable Papers

Sébastien Li-Thiao-Téa,∗

aUniversité Paris 13, CNRS, UMR 7539 LAGA
99, avenue Jean-Baptiste Clément, F-93 430 Villetaneuse, France

Abstract

Lepton is an automaton for literate executable papers. It enables researchers to publish their work in the form of a

script or program that can generate the research paper along with the corresponding source code, input data and output

results. Lepton files do not contain pre-computed results, but the full set of instructions for reproducing the results

presented in the manuscript.

Taking inspiration from literate programming for code review and code re-use, we have written Lepton to facilitate

the review and re-use of computational methods. Lepton is designed to provide strong guarantees for the reproducibil-

ity of the results, many features for easily applying the methods to new data while remaining unobtrusive and easy to

deploy in any environment.

Lepton is designed for writing reproducible technical reports during method development, and journal manuscripts

when the research is polished. Developped independently from the Elsevier Executable Paper Grand Challenge, it

addresses similar issues and objectives. This manuscript was written with Lepton.

Keywords: Executable papers, reproducible research, literate programming

1. Introduction

Communicating research results is about providing fellow scientists with the means to review and re-use. Repro-

ducing the results of experiments has always been at the heart of the scientific method. Originally, reproducibility

meant similar measurements and outcomes in experimental sciences such physics, chemistry, biology, etc. However,

with the advent of the computer, a new type of reproducibility has emerged. Modern computational science is also

about methods and results involved in extracting knowledge from the large datasets that are currently generated. These

methods and their results must also be reproducible.

As expressed by the 2011 Elsevier Executable Paper Grand Challenge, fundamental requirements are not met

by current publishing methodologies. In most research papers, essential elements of appreciation of the claims are

absent: source code, implementation details, input data, input parameters, description of the computing environment,

etc. Even when all these elements are present, reproducing the results in a paper can require high levels of technical

expertise. Finally, research papers are intended to be archived and preserved in the long term. How can we ensure the

reproducibility of methods and results when hardware and software evolve at an increasing pace?

∗Corresponding author

Email address: lithiao@math.univ-paris13.fr (Sébastien Li-Thiao-Té)

Available online at www.sciencedirect.com

440 SÈbastien Li-Thiao-TÈ et al. / Procedia Computer Science 9 (2012) 439 – 448

In this manuscript, we present Lepton[1], a tool developped independently from the Elsevier Executable Paper

Grand Challenge but which aims to solve the same fundamental issues. Leptoninherits from literate programming

[2] which is a paradigm for source code documentation and from experiments in programmatically generating PDF

documents such as research reports, exam papers and source code documentation. This piece of software is stable,

available for download, and was used to generate this manuscript.

As Lepton is a sophisticated yet very simple tool, we can provide a manual in Section 2. Lepton is a tool intended

for doing research (see Section 3). It creates transparent and reproducible papers (see Section 4) that are suitable

for publication and peer-review (see Section 5). In Section 6 we compare Lepton with other frameworks for repro-

ducible research proposed during the Elsevier Grand Challenge, and discuss how to extend Lepton with some of their

functionalities.

2. The Lepton manual

2.1. Tutorial
Lepton processes files written in LATEX-like syntax. To write a “hello world” manuscript, the first step is to write a

hello.nw file containing:

Code chunk 1: <<hello.nw>>
\documentclass[paper=a7]{scrartcl}

\usepackage[width=7cm,height=10cm]{geometry}

\input{lepton.sty}

\begin{document}

The code below sends "hello world" instructions to the \verb ocaml interpreter.

<<hello_world -exec ocaml>>=

let msg = "Hello world.";;

print_string(msg); print_newline();;

@

\end{document}

The second step is to apply Lepton. This tool splits the file into documentation and source code, executes instruc-

tions where specified, and embeds the results. Lepton turns hello.nw into a legitimate LATEX document hello.tex.

When processing a file, Lepton outputs the name of each encountered code snippet and how it deals with it.

Code chunk 2: <<hello.tex>>
lepton.bin hello.nw

hello_world (part 1): chunk as ocaml, exec with ocaml, output as text,

The last step is to compile using pdflatex. The -shell-escape option enables colorful pretty-printing with the

minted LATEX package. The resulting PDF file is displayed in Figure 1.

Code chunk 3: <<hello.pdf>>
pdflatex -interaction batchmode -shell-escape hello.tex

This is pdfTeX, Version 3.1415926-1.40.10 (TeX Live 2009/Debian)

\write18 enabled.

entering extended mode

/usr/bin/pygmentize

2.2. Usage and command-line options
lepton [-o texname] [-env envname] [filename]

Lepton uses filename as the input file name, or standard input when absent.

-o texname sets the name of the output LATEX file.

-env envname uses envname instead of the default minted environment. See Section 2.5 for details.

441 SÈbastien Li-Thiao-TÈ et al. / Procedia Computer Science 9 (2012) 439 – 448

The code below sends ”hello world” in-
structions to the ocaml interpreter.

Code chunk 1: hello world

let msg = "Hello world.";;

print_string(msg); print_newline();;

val msg : string = "Hello world."

Hello world.

- : unit = ()

% This file was generated by Lepton. Copyright Li−Thiao−Te
 S. 06/2011
\documentclass[paper=a7]{scrartcl}
\usepackage[width=7cm,height=10cm]{geometry}
\input{lepton.sty}
\begin{document}
The code below sends "hello world" instructions to the \ve
rb ocaml interpreter.
\begin{leptonfloat}
\caption{\flq\flq hello_world\frq\frq}
\label{hello_world}
\begin{minted}[frame=single,fontsize=\footnotesize]{ocaml}
let msg = "Hello world.";;
print_string(msg); print_newline();;
\end{minted}
\begin{minted}[frame=single,fontsize=\footnotesize]{text}
val msg : string = "Hello world."
Hello world.
− : unit = ()
\end{minted}
\end{leptonfloat}
\end{document}

Page 1/1hello.tex

Figure 1: PDF file (left) and LATEX source (right, rendered by a2ps) produced from hello.nw by Lepton.

2.3. Syntax
The syntax used in Lepton is inspired by the syntax of Noweb files [3] because of its simplicity. Lepton files

are plain-text LATEX files which may contain special blocks called code chunks. In Lepton, code chunks start with a

chunk header of the form <<header>>= at the beginning of the line, and end with @ at the beginning of the line. The

chunk header is parsed as a blank separated command line. The first word is the chunk name. The following words

are interpreted as chunk options. These control the output and interpretation of the chunk contents. Code chunks can

appear in any order.

Code chunks can contain references that are written as <<chunkname>>. The chunk reference is replaced by the

concatenation of all chunks with the same name. The amount of whitespace before the chunk reference is used to set

the indentation level: it is prepended to all lines when expanding the reference.

Code chunks can contain other code chunks. This allows embedding of Lepton files inside other Lepton files, such

as the hello.nw example in Section 2.1.

Two directives in LATEX syntax are interpreted by Lepton. We define a \Lexpr{interpreter}{code} macro for

direct inclusion of results in the LATEX documentation. We also define a \Linput{filename} directive for including

Lepton files and interpreting their contents. The Lepton manual is included in this document with \Linput.

2.4. Interpretation of code snippets
The contents of code chunks are interpreted as specified by the options in the chunk header:

• -write -nowrite : write the chunk contents to disk and use the chunk name as file name. Default: -nowrite,

• -expand -noexpand : expand chunk references in the documentation. Default: -noexpand,

• -exec interpreter : execute the chunk contents in an external interpreter. Default: none, i.e. do not execute,

• -chunk format -output format : indicate the format of the chunk contents and the chunk output for pretty-

printing. By default, the format is verbatim text. Special values are verbatim (the output is formatted LATEX

code intended for direct inclusion) and hide (the output is not included in the produced tex file).

Lepton interprets the source file sequentially. For each chunk, the references are recursively expanded, then the

chunk contents are optionally written to disk, and the chunk contents are optionally sent to the external interpreter. In

particular, written files and definitions sent to an interpreter are available for the subsequent code chunks.

The interpreter specified with -exec or \Linput is a session or process name. If it corresponds to a process

already open by Lepton, the process will be reused. Otherwise, the interpreter name is matched (by prefix) to a list

of known intepreters and a new instance is launched. Lepton currently supports the UNIX shell, OCaml, Python,

442 SÈbastien Li-Thiao-TÈ et al. / Procedia Computer Science 9 (2012) 439 – 448

R and there is preliminary support for Matlab. Several sessions of the same process can be open concurrently, e.g.

shell1, shell2, shellbis.

Other programming languages, notably compiled languages such as C/C++, can be used in Lepton by writing the

source code to disk and using the shell interpreter to compile and execute the programs. To use a makefile, put the

text into a chunk, write the chunk to disk and execute with shell.

Options that are set for a code chunk are propagated to the following chunks of the same name. lepton_options

is a reserved chunk name for setting default options. For example, <<lepton_options -write -chunk ocaml>>=

sets the default behavior to writing all chunk contents to disk, and formatting the chunk contents as OCaml code. The

chunk contents are ignored.

2.5. LATEX format and pretty-printing

Lepton relies on LATEX for formatting the documentation. Lepton wraps the chunk contents and its output in a

LATEX environment called leptonfloat, which is based on the float package (see Figure 1). Consequently,

• a caption is automatically included based on the chunk name,

• labels and indexes are automatically defined, the hyperref package can be used to link to chunk definitions,

• for each chunk reference, Lepton automatically adds a hyperlink to the corresponding chunk definition.

A list of all code chunks can be generated with \lelistoflistings and an index of code chunks with makeidx.

The chunk contents and the chunk output are independently formatted according to their respective options. For

pretty-printing, we use the minted package in combination with the Python Pygments beautifier [4] to provide

colorful syntax highlighting for many languages (See the rendered hello.pdf in Section 2.1). When not available,

the minted environment can be replaced with another LATEX environment via a command-line option to Lepton.

The current version of Lepton includes preliminary HTML output support.

2.6. Current implementation and availability

The current implementation is written as a Lepton file with source code in the OCaml programming language.

The Lepton code can be compiled to native code for speed on many architectures, and requires no external libraries.

Standalone binaries are available for GNU/Linux 32-bit and 64-bit platforms and can be downloaded from http:

//www.math.univ-paris13.fr/~lithiao/Lepton.html. For other platforms such as Windows, the mechanism

for external command execution has not been ported yet.

3. Using Lepton for research

Lepton is a tool primarily intended for doing research, before publishing a polished method and its results. As an

example, we consider the sequence alignment problem in bioinformatics. The amino-sequences of two proteins are

given in the input.fasta file in FASTA format. We want to evaluate the similarity of the character patterns because

this is often related with similarity in the biological function.

Code chunk 4: <<input.fasta>>
cat input.fasta

>gi|263348|gb|AAB24881.1| zinc finger [Homo sapiens]

YECNQCGKAFAQHSSLKCHYRTHIGEKPYECNQCGKAFSKHSHLQCHKRTHTGEKPYECNQCGKAFSQHGLLQRHKRTH

TGEKPYMNVINMVKPLHNS

>gi|263346|gb|AAB24880.1| zinc finger [Homo sapiens]

TGEKPFACKGCKKAFDQKITLIQHEGVHTGEKPYECRRCGSPSAGVETSLCIRSHTLKRHPFKHRASHYQAHYT

443 SÈbastien Li-Thiao-TÈ et al. / Procedia Computer Science 9 (2012) 439 – 448

3.1. Literate programming for method implementation

Proposed by D.E. Knuth [2, 5], literate programming is about writing source code as a work of literature that can

be read both by computers and by humans. This involves writing documentation with embedded code rather than

writing code with comments, as well as tools to extract the source code from the documentation.

In the literate programming paradigm, source code and its documentation can be organised regardless of the

constraints of the programming language. Source code can be split into meaningful chunks and can appear inside

the document in any order. Chunk references encourage code modularity. Code chunks can be pretty-printed to

increase readability, indexed and referenced throughout the document with hypertext links. Documentation may

include formulae, tables and graphics instead of plain-text comments.

When programming in particular and in computational science in general, the researcher cares about the correct-

ness of source code. Compilation instructions in a Lepton file ensures syntactic correctness. Semantic correctness can

be checked by executing the compiled programs on test cases to make sure that they behave according to the specifi-

cation. Lepton automates these steps by including the compiler and test outputs and ensures that the documented code

corresponds to what was compiled and executed.

Due to size requirements, we will use ClustalW [6] instead of implementing a sequence alignment program in this

manuscript. Source code and documentation are available at www.clustal.org.

3.2. Report generation and analysis of results

Similarly to Sweave [7], complete analyses of datasets can be written easily using Lepton. Code chunks can be

used for including input data. Executable instructions and scripts can be directly seamlessly included in the LATEX

report; Lepton will automatically execute and embed the results. Code can be pretty-printed, hidden, or moved to the

appendix. Output can be pretty-printed, hidden or included as legitimate LATEX code.

Tables, plots, charts and other figures can be programmatically generated and inserted in the report. In particular,

the instructions for generating these figures are available inside the documentation, next to the figure location. In the

event of a parameter change, new data, or modifications to the analysis method, these instructions can be modified

easily and the whole report will be updated. For example, in the following code chunk we compute the alignment,

store the results in the file output.aln and render to PDF for inclusion in the current LATEX article.

Code chunk 5: <<draw sequence alignment>>

clustalw -INFILE=input.fasta -OUTFILE=output.aln > /dev/null

prettyplot output.aln -residuesperline 100 -graph pdf

Lepton supports collaborative research. As Lepton encourages researchers to write fully documented reports and

provide the scripts for generating output, Lepton files automatically contain all the relevant information for discussing

parameter values, method implementation, etc. and the file can be updated easily to follow the discussions. Being

LATEX files, Lepton files can be amended by several authors easily with any text editor.

3.3. Simplicity, flexibility, universality

Inspired by Noweb and Sweave, Lepton attempts to bring the best features from these tools to the user in terms

of simplicity. Lepton’s manual fits in Section 2, and defines only four syntax elements. Lepton only requires a single

invocation on the command-line to extract the source code, execute the instructions and produce the documentation

instead of two separate steps called tangling and weaving in Noweb. As an echo to D. E. Knuth in [5], we say that the

process of “tangle, compile, load, and go” has been reduced to “lepton, and tex”.

Lepton can be used with any programming language, and is compatible with all sorts of tools. Although it serves

as a full documentation for source code, it can be used with documentation systems which expect comments and

generate API documentation. Lepton files are plain text files that can be used in version control systems. In particular,

the diff utility can be used to track changes in the code and changes in the documentation at the same time.

Lepton produces fully compatible LATEX files and a specific LATEX package is not mandatory. Consequently, Lepton

files are compatible with all LATEX packages and styles. The current manuscript is an example of using Lepton for

444 SÈbastien Li-Thiao-TÈ et al. / Procedia Computer Science 9 (2012) 439 – 448

writing a journal submission, but Lepton can also be used for thesis reports or slides for conference presentations.

Large portions of text and code can be shared or reused between those documents.

Lepton can be used in many different contexts besides research. This tool was originally designed for literate

C programming and writing technical reports for our research in computational image analysis. We also use Lepton

when teaching undergraduate statistics courses, producing randomly generated test subjects as well as the correspond-

ing solutions.

4. Using Lepton for reproducible research

Reproducibility corresponds to two distinct properties. We say that a paper is executable when the computer

program can be used as a black box to produce identical outputs1. Research is literate when it can be applied to other

datasets, with other parameters, modified or reimplemented to produce original work. Executability corresponds to

reproducibility for the computer whereas literacy corresponds to the point of view of the human reader.

4.1. Executable papers
In UNIX, executable files starting with #! followed by the path to a command interpreter are treated as scripts

and sent to the command interpreter for execution. In particular, Lepton files starting with #!/usr/bin/lepton are

treated as system commands. With this mechanism, typing ./paper124.nw in a terminal reads the input.fasta file,

executes the instructions and generates the results prettyplot.pdf and the documentation in paper124.tex.

As Lepton files contain input data, source code and the instructions for using this source code, it suffices to execute

them in a compatible environment. Many tools have been developped to specify software requirements. For example,

configure scripts can indicate both the minimal requirements and the version of locally installed software. They are

used during installation but also to allow programmers to reproduce the conditions leading to a software bug. Their

output can be included in a Lepton file by running shell commands such as:

Code chunk 6: <<shell>>
uname -a

COLUMNS=90 dpkg -l gcc clustalw emboss | tail -n 5 # Debian package system

Linux laptop 3.2.0-2-686-pae #1 SMP Tue Mar 20 19:48:26 UTC 2012 i686 GNU/Linux

||/ Name Version Description

+++-================-================-==

ii clustalw 2.1+lgpl-2 global multiple nucleotide or peptide sequence a

ii emboss 6.3.1-6+b1 the european molecular biology open software sui

ii gcc 4:4.6.2-4 GNU C compiler

By specifying the software requirements, Lepton allows authors to choose their software tools, and readers to

reproduce the results on their own hardware. Lepton programs may even include commands for configuring the

computing environment. In cases where specific hardware or large amounts of computational resources are required,

we suggest that the method be executed on a toy example for illustration, and that intermediate results be used to

generate the tables and figures in the manuscript.

4.2. Literate papers
For a thorough understanding, Lepton provides readers with documentation, instructions for executing the pro-

grams and the means to easily modify the research method. Input datasets can be easily replaced, in particular when

the data set is supplied as an external file such as input.fasta. Running Lepton again will automatically update the

results.

As the instructions for running the programs are provided, they can be altered. Lepton files are plain text so

code chunks can be easily edited to change the values of parameters, input and output file names, etc. Enabling and

1In fact, exact reproduction may not be possible in some cases like random number generation, differences in compiler rounding policy and

number representation, etc.

445 SÈbastien Li-Thiao-TÈ et al. / Procedia Computer Science 9 (2012) 439 – 448

disabling parts of the analysis workflow is possible by modifying the source code, or by toggling the execution of the

whole chunk.

Most importantly, Lepton encourages the author to provide a complete documentation for its programs and meth-

ods. This ensures reproducibility and understandability. With the proper documentation, source code and intermediate

results generated by Lepton are available and can be reused in other approaches. If needed, users should be able to

reimplement the method from scratch.

5. Using Lepton for publishing research

5.1. Submission
Technical reports written with Lepton can serve as drafts for manuscript submission. By using the LATEX format,

Lepton files are compatible with many existing publication workflows. This manuscript was written with Lepton

using the Elsevier LATEX package and sent to the online submission system as usual. The Lepton file is included as

supplementary material, along with the produced LATEX and figure files.

Lepton files are self-contained. If the research paper can be executed by the submission system, then it is not

necessary to transmit the source code, result files and figures. As discussed in Section 4, we suggest that input data

should be included as external files and read as input to the executable Lepton paper.

Lepton files are rendered as traditional research papers, with high-quality typesetting, colors and figures. The

Lepton syntax is flexible. Writers are free to organise their ideas and chunk references can be used to adapt the

execution order to the flow of the document. Lepton files are compatible with publishers’ style and guidelines. By

using chunk references source code can be hidden or moved to the appendix without modifying the order of execution.

Although Lepton is currently focused on LATEX documentation, the tool is designed to be independent of the

documentation format. Only 20 lines of code are specific to LATEX; these are mostly related to the encapsulation of

code chunks and their output in a LATEX environment, labels and references. Lepton incorporates a template system

and preliminary support for HTML documents and WiKi documents; this will accomodate future publishing formats.

5.2. Peer review
As already discussed, properly written Lepton files contain all the required information for reproducing the results

in a research paper. We suggest the following review procedure to examine the information contained in those files.

Reviewers should first attempt to execute the Lepton file in a blank environment. When encountering a problem,

Lepton does not generate a complete LATEX file; successfully applying Lepton ensures that the submission is complete

and free of errors. The computing environment may optionally be restricted by the publisher to a standard list of

software or the publisher may provide authors and reviewers with a pre-configured environment.

Then, reviewers should examine the Lepton log and the list of supplementary files provided. This quickly indicates

which elements of the research paper are generated and which are pre-computed by the authors. In the current version,

Lepton writes to the terminal the name of each code chunk and how it interprets it (write to disk, execute with

interpreter, show or hide, see the example in Section 2.1). We can alternatively supply a modified version of Lepton

that inserts this information inside the draft PDF document.

Finally, reviewers should check that the algorithm description matches the source code implementation. In the

literate programming paradigm, this should be a fairly easy task when the code is properly documented. Reviewers

should also check that to the best of their knowledge the published source code does not contain malicious code.

5.3. Publication
When the paper is accepted, the Lepton source file and the computing environment can be provided as supple-

mentary material, so that readers can reproduce the results in the research paper. Lepton does not make a distinction

between authors, reviewers and readers; all can expect the same level of functionality.

When publishing a research paper online, LATEX can be converted to HTML with already existing tools such as

latex2html (See the list at http://www.tex.ac.uk/cgi-bin/texfaq2html?label=LaTeX2HTML).

Lepton does not deal with licensing issues. To facilitate review and re-use, there is no access control mechanism;

Lepton files are completely transparent. Nevertheless, authors can provide intermediate results instead of the original

input data and compiled executables instead of source code. The Lepton file may be withheld depending on the

editorial policy or licensing issues.

446 SÈbastien Li-Thiao-TÈ et al. / Procedia Computer Science 9 (2012) 439 – 448

5.4. Long-term preservation

As discussed in Section 4, the publisher must preserve both the executability of research papers and their readabil-

ity. Preserving executability is a technical issue related to the rapid evolution of hardware (new cpus) and software

architectures (programming languages, library versions, file formats).

Nowadays, complete computing environments can be preserved with virtual machines. The hardware is emulated

with near native speed, and software is stored in a special file format. Virtual machines can easily be cloned and trans-

ferred. Publishers could provide a set of standard virtual machines corresponding typical environments (Windows,

MacOS, UNIX/LINUX) with a standard suite of software (including Lepton), add new machines to this set to follow

software updates and preserve copies of these virtual machines in the long term.

Using virtual machines simplifies preservation of software and research papers because only the emulator needs

to be maintained. However, there are currently several types of virtualization schemes, implemented as open source

projects (Xen, KVM) or proprietary software (VMware, VirtualBox, . . .). This raises questions as to the long term

maintenance of emulators and the compatibility of virtual machine file formats.

Programs preserved in a virtual machine are difficult to re-use because they reside in a separate environment.

To communicate (send data, launch computations and retrieve results), one must go through the same procedures as

working on a remote computer via a network connection. Consequently, such programs are difficult to include in other

workflows or modify to run in a different computing environment.

To ensure the long term preservation of research, we believe that preserving the means to reimplement2 is more

important than preserving executability. These are a thorough documentation and a readable file format. Lepton uses

literate programming to address the documentation issue. As to readability, Lepton favors LATEX which is a concise

plain-text format and requires no specific software to read and edit contrary to PDF. We encourage authors to include

input data as separate files so that the Lepton file remains small and easy to browse and edit in any text editor.

6. Comparison with existing software

6.1. Literate programming

The concept of “literate programming” was invented by D. E. Knuth in 1984 with the WEB program [2, 5], which

he used to implement the TEX system. Knuth defined a vision of source code that is documented with the powerful

capabilities of TEX and provided two programs to support this concept: tangle extracts source code and weave

produces the documentation. Most current literate programming tools use the same tangle/weave approach with a

different syntax, support for any programming language, and documentation format in LATEX or HTML.

In Lepton we have included the features that we find most appropriate for reproducible research. Instead of the

tangle/weave approach in Noweb [3] and FunnelWeb [8], we prefer a single step approach similar to Nuweb [9] and

Sweave [7] in which the Lepton file can be considered as a script itself. We use the simple syntax found in Noweb

[3] with chunk options inspired from Sweave [7] for flexible control of the output format. In addition to the source

code of literate programs, research reports must contain documented instructions for generating the program output,

i.e. the analysis results. Sweave enables this for the R statistical software whereas Lepton can use any programming

language and can combine several languages in the same document.

6.2. Executable papers

To reproduce the results in a research paper, the reader needs to know how the results where generated and

in which conditions. Provenance-based approaches to reproducible research [10, 11] aim to systematically store

how data, experiments and results were generated. These approaches guarantee only one successful execution of

a research paper. In practice, results may be difficult to reproduce if the provenance information is incomplete —

lacking a full description of the computing environment — or when figures are generated with different versions

of the same software. Provenance information is stored in databases, and may be impossible to decipher without

adequate software.

2Long-term preservation of research methods corresponds to portability, which is well-known to software engineers who are confronted with

many different software architectures.

447 SÈbastien Li-Thiao-TÈ et al. / Procedia Computer Science 9 (2012) 439 – 448

In contrast, executable papers make it possible to regenerate the results on demand, modify parameters and in-

put data. The provided executable instructions indicate how to generate the results, and it suffices to describe the

computing environment. Web servers (Collage [12], SHARE [13], R2 [14], Paper Mâché [15], IPOL [16]) provide a

convenient user interface to pre-configured computing ressources but usually restrict the computing environment to a

limited set of software. Authors can provide complete, ready-to-use computing environments with virtual machines

[13, 15]. In Lepton and [14, 17, 18], the research paper can be executed on a wider range of environments, including

the local machine, but all the dependencies must be installed by the reader. Note that all executable papers require a

computation engine and this can be preserved inside a virtual machine.

6.3. Access to ressources

It is well-accepted that reproducible papers should include input data, source code, and a description of the com-

puting environment and how the results were generated; the considered frameworks differ in the level of access to

these ressources. Papers that can be installed locally (Lepton and [14, 17, 18]) provide the best level of access. Al-

though the computing environment needs to be set up, local papers with bundled input data are unaffected by broken

URLs or network connectivity. Moreover, computing ressources provided by publishers are limited in cpu time and

dataset size. As discussed in Section 5.4, papers encapsulated in virtual machines are difficult to integrate into new

approaches.

However, software and data sets that are protected by licenses cannot be readily distributed with research papers.

Collage, [12] and SHARE [13] implement some level of digital rights and user management; these features can be

complemented by the publisher. As indicated in Section 5.3, Lepton is designed without licensing features so that

readers can produce results in the same conditions as the authors of the research paper.

6.4. Review and reuse

In comparison with other tools, Lepton is focused on documentation and re-usability of the published material.

Lepton is designed for work-in-progress research that should be reviewed and improved rather than polished ap-

proaches ready for publication. Consequently, fiddling with the contents of a research paper by authors and readers

is unobstructed by the publication system. In contrast, web-based approaches are restricted by the user interface.

Temporary results generated during method development can clutter provenance-based system.

In web-based frameworks, the format of the research paper is restricted. For example, results must appear in-

side frames in Collage. In Lepton and Sweave, results can appear anywhere in the documentation, and parts of

the documentation can be programmatically generated. Other types of documents can be generated such as Beamer

presentations.

Depending on the documentation format some elements of interactivity can be included in reproducible papers.

The HTML format can provide interactive visualizations and execution of code snippets in [12, 11]. In Lepton and

Sweave, the research paper is a static PDF file which ensures that all the results coincide with the presented source

code. Lepton depends on LATEX only for formatting code chunks and can be easily extended for HTML output and

interactive visualization via browser plugins.

Literate research papers document the methods to access the ressources provided with the manuscript as opposed

to “code-data dumps”. To ensure that source code is properly documented and reviewed, we suggest that it should be

included in the main publication medium, in the appendix or as a full publication. Additionally, executable instructions

provide the instructions needed to re-use the provided input data sets, including those in proprietary formats.

As indicated in Section 5.4, long-term reproducibility is dependent on the quality and readability of the documen-

tation so that the research method can be reimplemented. In web-based systems and specific file formats such as HDF

[17], research papers may become unreadable when the corresponding software ceases to be maintained. When even

a PDF reader or an HTML browser is no longer available, two formats are ultimately readable: Lepton uses plain text,

and [18] uses natural language.

7. Conclusion

Lepton is a powerful tool for producing technical reports, research manuscripts as well as other types of docu-

ments. All the elements in a project can be embedded in the same Lepton file: input data, source code, executable

448 SÈbastien Li-Thiao-TÈ et al. / Procedia Computer Science 9 (2012) 439 – 448

instructions and the documentation for all of these. By enabling command execution in external interpreters, parts

of the document can be programmatically generated and Lepton files can be turned into self-contained executable

programs.

Lepton takes its inspiration from literate programming and suggests to use the tools and approaches developped in

software engineering for code review and re-use. As such, Lepton can be used with any programming language and

any documentation format. With its unobtrusive syntax, Lepton can be quickly adopted and deployed in a wide variety

of environments. Nevertheless, the task of writing thorough documentation remains the author’s responsibility.

To meet the demands of reproducible research in computational science, we propose to write research papers as

literate executable programs and provide Lepton as the tool to implement this approach. This piece of software is

stable, extensible and will be able to accomodate the interactive visualization of research results as well as future

publication systems and formats.

References

[1] S. Li-Thiao-Té, Lepton User Manual.

URL http://www.math.univ-paris13.fr/~lithiao/ResearchLepton/Lepton.html

[2] D. E. Knuth, Literate programming, THE COMPUTER JOURNAL 27 (1984) 97–111.

[3] N. Ramsey, Literate programming simplified, Software, IEEE 11 (5) (1994) 97–105.

[4] G. Brandl, T. Hatch, A. Ronacher, Pygments.

URL http://pygments.org/

[5] D. Knuth, S. U. C. S. Dept, Literate programming, Center for the Study of Language and Information, 1992.

[6] M. Larkin, G. Blackshields, N. Brown, R. Chenna, P. McGettigan, H. McWilliam, F. Valentin, I. Wallace, A. Wilm, R. Lopez, et al., Clustal

w and clustal x version 2.0, Bioinformatics 23 (21) (2007) 2947–2948.

[7] F. Leisch, Sweave: Dynamic generation of statistical reports using literate data analysis, in: W. Härdle, B. Rönz (Eds.), Compstat 2002 —

Proceedings in Computational Statistics, Physica Verlag, Heidelberg, 2002, pp. 575–580, iSBN 3-7908-1517-9.

URL http://www.stat.uni-muenchen.de/~leisch/Sweave

[8] R. Williams, et al., FunnelWeb user’s manual (1992).

URL http://www.ross.net/funnelweb/reference/index.html

[9] P. Briggs, J. D. Ramsdell, M. W. Mengel, S. Wright, K. Harwood, Nuweb Version 1.57 A Simple Literate Programming Tool.

[10] M. Gavish, D. Donoho, A universal identifier for computational results, Procedia Computer Science 4 (0) (2011) 637 – 647, proceedings of

the International Conference on Computational Science, ICCS 2011. doi:10.1016/j.procs.2011.04.067.

URL http://www.sciencedirect.com/science/article/pii/S1877050911001256

[11] D. Koop, E. Santos, P. Mates, H. T. Vo, P. Bonnet, B. Bauer, B. Surer, M. Troyer, D. N. Williams, J. E. Tohline, J. Freire, C. T. Silva, A

provenance-based infrastructure to support the life cycle of executable papers, Procedia Computer Science 4 (0) (2011) 648 – 657, proceedings

of the International Conference on Computational Science, ICCS 2011. doi:10.1016/j.procs.2011.04.068.

URL http://www.sciencedirect.com/science/article/pii/S1877050911001268

[12] P. Nowakowski, E. Ciepiela, D. Harezlak, J. Kocot, M. Kasztelnik, T. Bartyński, J. Meizner, G. Dyk, M. Malawski, The collage authoring

environment, Procedia Computer Science 4 (0) (2011) 608 – 617, proceedings of the International Conference on Computational Science,

ICCS 2011. doi:10.1016/j.procs.2011.04.064.

URL http://www.sciencedirect.com/science/article/pii/S1877050911001220

[13] P. V. Gorp, S. Mazanek, Share: a web portal for creating and sharing executable research papers, Procedia Computer Science 4 (0) (2011)

589 – 597, proceedings of the International Conference on Computational Science, ICCS 2011. doi:10.1016/j.procs.2011.04.062.

URL http://www.sciencedirect.com/science/article/pii/S1877050911001207

[14] F. Leisch, M. Eugster, T. Hothorn, Executable papers for the r community: The r2 platform for reproducible research, Procedia Computer

Science 4 (0) (2011) 618 – 626, proceedings of the International Conference on Computational Science, ICCS 2011. doi:10.1016/j.

procs.2011.04.065.

URL http://www.sciencedirect.com/science/article/pii/S1877050911001232

[15] G. R. Brammer, R. W. Crosby, S. J. Matthews, T. L. Williams, Paper mâché: Creating dynamic reproducible science, Procedia Computer

Science 4 (0) (2011) 658 – 667, proceedings of the International Conference on Computational Science, ICCS 2011. doi:10.1016/j.

procs.2011.04.069.

URL http://www.sciencedirect.com/science/article/pii/S187705091100127X

[16] N. Limare, J.-M. Morel, The ipol initiative: Publishing and testing algorithms on line for reproducible research in image processing, Procedia

Computer Science 4 (0) (2011) 716 – 725, proceedings of the International Conference on Computational Science, ICCS 2011. doi:

10.1016/j.procs.2011.04.075.

URL http://www.sciencedirect.com/science/article/pii/S1877050911001335

[17] K. Hinsen, A data and code model for reproducible research and executable papers, Procedia Computer Science 4 (0) (2011) 579 – 588,

proceedings of the International Conference on Computational Science, ICCS 2011. doi:10.1016/j.procs.2011.04.061.

URL http://www.sciencedirect.com/science/article/pii/S1877050911001190

[18] S. M. Veres, J. P. Adolfsson, A natural language programming solution for executable papers, Procedia Computer Science 4 (0) (2011) 678 –

687, proceedings of the International Conference on Computational Science, ICCS 2011. doi:10.1016/j.procs.2011.04.071.

URL http://www.sciencedirect.com/science/article/pii/S1877050911001293

