
Available online at www.sciencedirect.com

1877–0509 © 2011 Published by Elsevier Ltd. Selection and/or peer-review
under responsibility of Prof. Mitsuhisa Sato and Prof. Satoshi Matsuoka
doi:10.1016/j.procs.2011.04.070

Procedia Computer Science 4 (2011) 668–677

p

International Conference on Computational Science, ICCS 2011

IODA - an Interactive Open Document Architecture

J. Siciarek, B. Wiszniewski∗

Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology,
Narutowicza 11/12, 80-233 Gdansk, Poland

Abstract

Objective of the proposed architecture is to enable representing an electronic document as a multi-layered struc-

ture of executable digital objects, which is extensible and without a need to support any particular formats or user

interfaces. IODA layers are intended to reflect document content organization levels rather then system abstraction or

functional levels, as in software architecture models.

Keywords: document engineering, multi-layered architecture, interactive service composition

1. Motivation and background

Since the beginning of human civilization documents have been widely accepted as natural means for representing

information and providing interfaces to human driven processes. Today, when it is strightforward to store and process

them as any other digital data, an important issue is not to offer electronic document solutions forcing human users

to abandon their habits developed with traditional paper-form documents. Although notations for representing a

document in a computer memory, or tools for manipulating its content, may change, simple actions like annotating

or marking document pages directly on their image is the most natural and expected functionality of any electronic

document system. Surprisingly this is not an easy task given the myriad of formats used to represent a document in

a digital form needed for its storage: from binary bitmaps of document scans, through description of document pages

in postscript, or editable word processor content, up to logical document structure descriptions with typesetting or

markup notations. Many of these formats require different tools to view a document content in a form resembling

its hard copy image. Web browsers attempt to bridge that “format” gap by utilizing the mechanism of plugins, but

marking a visual content of thus rendered document is not easy due to the problem of robust anchoring, needed for

marking and annotating a document at the client side – regardless of a document format and functionality of the server

side [1, 2]. A limited solution might be providing functionality at the document server side to enable marking and

annotating its content by remote users. It should however be independent of a document format to provide forward

compatibility with standards that may appear in the future, as well as escape from the trap of developing a heavy

machinery for “programming” papers that may quickly become obsolete before reaching maturity.

A perspective of associating markings of a document content with functions leads to a tempting concept of ex-
ecutable documents. This concept will certainly extend a traditional understanding of an electronic document by

∗Corresponding author

Email addresses: siciarek@wp.pl (J. Siciarek), bowisz@eti.pg.gda.pl (B. Wiszniewski)

J. Siciarek et al. / Procedia Computer Science 4 (2011) 668–677 669

leveraging its usability as an interface unit to services doing anything anywhere on the Web. Interactive Open Doc-

ument Architecture model proposed in this paper provides a solution to the problem of making a document content

executable despite of its particular representation format. The proposed solution is light-weight, i.e., does not require

documents to be in any particular format, relies as much as possible on the existing technologies and tools and takes

advantage of interactive interpretation of a document content by human users rather than automatic parsing with a

hard wired code.

2. Multi-layered document architecture

A key point about IODA is that it does not introduce any specific document format nor require implementing

document functionality in any particular programming language. It just provides a sort of a document spine that binds

tools and services that already exist in a Web document ecosystem. A document spine is implemented as an XML file

that simply combines three layers shown in Figure 1.

script

binaries

source

paper

data files

marked area

marked range

marked point

code

intra document link

objects, elements

links, logs, notes

Figure 1: IODA layers

Layers of IODA reflect broad interpretation of a “digital object” from a viewpoint of digital libraries [3]. A data
layer collects bits and bytes of text and binary files, which are just recorded “facts”. Patterns that underlie those

data and enable their interpretation constitute an information layer. Finally “contexts” of the interpretation patterns

constitute a knowledge layer.

2.1. Data layer

This is the base layer and contains a main document in a form of a file ready to display or print. Document content

may be binary, e.g. an image in TIFF or JPEG, or textual, e.g. PDF or RTF. Along with the main document file the

data layer may contain or refer to text or binary files with data, scripts, source code, executable binaries, and so on.

Binary files and scripts implement services that can make document content executable. IODA distinguishes three

kids of such services called respectively: embedded, local and external. Embedded services are executed at the host

document server for data stored in the data layer. Local services are performed as browser plugins or default local
applications at the client side – upon downloading data from the data layer. Further modifications of downloaded

data do not affect the original content of a document data layer, as they are performed at the client’s workstation and

670 J. Siciarek et al. / Procedia Computer Science 4 (2011) 668–677

provide a flexible experimentation facility for the paper user. If a service cannot be executed as the embedded or local

one, an external software service described by the respective entry in a data layer is searched and invoked. Examples

include a missing plugin in the user browser, which may be downloaded and installed via an external service and next

continued as a local one, processing large volumes of data from some remote site specified by the data layer with a

specialized cloud service at yet another remote site, authorization or certification prior to accessing some restricted

resources of the data layer, and anything else not provided by embedded or local services.

2.2. Information layer

Interpretation patterns of this layer build upon the data layer components. IODA does not impose any specific

format to define these patters. They combine selected semantic objects from a document content (types), with syn-

tactical structures (viewers) of a document layout, and fragments of a document image (markings). Markings take

the form of a point (a character or a pixel), a text range (a string of characters), a specific page object, or a structure,

being a collection of any of the former. Markings associate selected objects with services of the data layer, which

may be executed upon receiving events generated by user actions performed on a marked document. In that regard

the information layer implements the classic Model-View-Controller design pattern for any user interaction with the

executable paper content.

2.3. Knowledge layer

Information layer combines respective data of the data layer to facilitate user interaction with marked fragments of

the principal document image. However, user interaction scenarios, e.g. those performed by reviewers, may require

contexts of interpretation patterns implemented by the information layer. This is a task of the topmost knowledge
layer. Building up contexts of data interpretation patterns uses notes and links. Notes constitute a portion of a text

or multimedia, like audio, image or video clips attached to one or more selected markings of the information layer.

Relationships between markings are defined with links, and provide a context for interpretation patters of document

fragments by users. Links may be of intra- and inter-document type. Intra-document links relate tags within a single

document, while inter-document links provide references to markings in other IODA documents. Most operations of

this layer are performed by using a standard client browser functionality: viewing a rendered document, exercising

functionality of its marked fragments, defining links and navigating between them, as well as editing and attaching

notes.

Two additional operations that may be useful at this level of document organization are: logging of user actions,

and searching for documents. The former provides support for resumption, fail-safe recovery of user actions if a

connection breaks, or monitoring user actions to notify the interested parties on completing some required actions by

the user. The latter may involve various mechanisms for content-based search and retrieval of documents to build

inter-document links. Such a searching facility may be particularly useful to validate citations and detect plagiarism.

3. Implementation

Implementation of any IODA document requires just a few XML files, of which data.xsd, information.xsd

and knowledge.xsd specify directly the respective layers described before:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://ioda.siciarek.pl" ...

...>

<xs:include schemaLocation="./metadata.xsd" />

<xs:include schemaLocation="./data.xsd" />

<xs:include schemaLocation="./information.xsd" />

<xs:include schemaLocation="./knowledge.xsd" />

</xs:schema>

J. Siciarek et al. / Procedia Computer Science 4 (2011) 668–677 671

∞

∞

∞

∞

∞

∞

Figure 2: Elements of the data layer

File metadata.xsd specifies customary metadada of the main paper, such as <ioda:author>, <ioda:title>,

and <ioda:reviewer>, along with its brief <ioda:description> and revision <ioda:history>.

Logical structure of the data layer specified by the data.xsd file is shown in Figure 2. It consists of two es-

sential parts: <ioda:artifacts> collecting source data, and <ioda:services> supporting the executable pa-

per functionality. The data part includes the <ioda:main> paper, its associated <ioda:attachment> elements

and if needed <ioda:reference> elements specifying external data resources. Services specified respectively as

<ioda:embedded>, <ioda:local> and <ioda:external> are implemented in a standard <ioda:url> form, in-

dicating respectively entries to functions attached to the main paper, document server functions supporting export of

data and/or code to the client workstation, and software services of specific external servers

Logical structure of the information layer specified by the information.xsd file is shown in Figure 3. Its

principal components are semantic <ioda:objects>. Depending on the particular format of the <ioda:main>

document they may directly indicate objects in its source file, e.g. streams in PDF or RTF files, specific markups, e.g.

nodes of an XML tree, or fragments of bitmaps – if the main document is just a scan. Objects may be viewed with

<ioda:viewers> as members of various syntax structures. The most common has been implemented for the first

prototype of IODA: <ioda:table> elements consisting of <ioda:field> elements, and <ioda:chart> elements,

each one with its specific <ioda:xrange> and <ioda:yrange> axes and <ioda:series> plots of <ioda:line>

elements. Finally, the <ioda:exec-spots> element specify various markings of a rendered document canvas that

may intercept user events. Markings may involve a <ioda:point> (a pixel or character), a linear <ioda:range> of

text, a specific <ioda:object>, like a formula or a piece of a source code, and <ioda:structure> collecting any

of the former three types of markings.

Knowledge layer elements shown in Figure 4 include <ioda:links>, which associate markings within the same

document (intra-document links) or between separate documents (inter-document links), <ioda:notes>, which as-

sociate markings with user annotations, and <ioda:logs>, which register data related to user actions performed

in a document. Finally, <ioda:exec-sets> specifies the spine component of IODA that combines internal docu-

ment data, viewers, services and user events to make it executable and provide a front-end interface to the user. The

<ioda:trigger> element specifies objects to be activated and their associated <ioda:data-provider> services

called to get out specific data from the document. A more complex behaviors of the activated objects may also be

implemented, which ar specialized data processing services specified by the <ioda:exec> element producing results

presented with associated data viewers specified by the <ioda:data-viewer> element.

672 J. Siciarek et al. / Procedia Computer Science 4 (2011) 668–677

∞

∞
∞

∞

∞

∞

∞

∞

Figure 3: Elements of the information layer

J. Siciarek et al. / Procedia Computer Science 4 (2011) 668–677 673

∞

∞

∞

∞

∞

∞

∞

Figure 4: Elements of the knowledge layer

674 J. Siciarek et al. / Procedia Computer Science 4 (2011) 668–677

4. IODA document life-cycle

There are in general three phases of a paper life-cycle: submission, reviewing and publication. Submission in-

volves the main document in a printable form, most often PDF. For older papers in data layers scanned images in any

binary format may also be considered – for example when building a digital library of executable papers, with their

historical predecessors already published.

Upon completing a main document and including it in the data layer, providing attachments and setting-up the

information layer, authors make it ready for reviewers. The latter read it carefully and exercise its functionality by

interacting with marked document fragments, expand if possible the information layer with their own markings, and

also incorporate in the knowledge layer their notes and links. Reviewing is an iterative process, so when the review

is complete, authors introduce in the next cycle a revised version of the main document. Depending of the depth of

the revision requested by the reviewer, authors edit the content of data and information layers. Changes are tracked

by the document server and stored in the knowledge layer to help reviewers in assessing recent author’s revisions. If

successful, the paper enters the publication phase after several iterations, and its whole or just partial functionality is

made available to the public ever after.

4.1. A simple user scenario
In order to demonstrate in practice basic functionality of IODA, a special executable demo paper has been imple-

mented and published on the Web [4] by Authors. Its content explains how to predict trends in money markets with

simple, weighted and exponential moving averages. In particular, usability of these metrics is discussed with various

charts plotted for some real data, respective formulas for calculating moving averages are given, and their implemen-

tation in C++ is presented. The demo paper implements all essential features of IODA for most common objects and

structures of a scientific paper, including tables with numerical data, charts, formulas and pieces of code. Detailed

presentation of the executable paper demo is beyond the scope of this paper, so just one example user scenario is given

below to illustrate the basic concepts introduced before.

The main paper of the demo data layer is a plain PDF file, with attached numerical data text files containing

numbers presented in tables, gnuplot scripts for generating charts for these data, source code implementing related

formulas in C++ and the executable binary code for calculating them.

Consider Figure 5 which illustrates a simple scenario of using the executable demo paper functionality. Numer-

ical objects representing dates appear in three structures specified in the information layer <ioda:viewers>: the

<ioda:chart> element specifying a plot illustrating rate changes in time, and two <ioda:table> elements spec-

ifying respectively a table with currency exchange rates EUR/PLN in a period from 2010.12.01 to 2011.03.01, and

another one listing simple moving average values for window size n = 5. Values listed in the latter table have been

calculated with a formula marked as a point and linked to that table object. Owing to these definitions, a user marking

a chart area shown in the upper right corner of Figure 5 may initiate any predefined chain of events: a range of values

labeling axis X of the chart is selected, which in turn implies marking of the shaded area of the table with rates at the

upper left corner of Figure 5 and the respective table with simple moving average values at the bottom left corner.

The marked range of dates indicates a sequence of 29 values of EUR/PLN exchange rates that are taken from

the respective data file specified by the <ioda:attachment> element of the data layer. Owing to the link indicating

a formula, which is an object associated via the <ioda:exec> element of the knowledge layer with an embedded

service provided by a binary code attached to the main paper at the data layer, a new value of a simple moving average

for n = 29 is finally calculated. Alternatively, instead of associating the linked formula with a binary code calculating

simple moving average values, a script may be executed to generate and upload to the user’s workstation a complete

spreadsheet, ready to use by his/her applications, like Microsoft Excel or Open Office Calc. For particularly long

data sequences (for example billions of rates), or formulas requiring higher computational power than offered by a

document server (for example n = 1000000), some external services specified in the data layer might be called instead.

4.2. Executable paper development framework
The binding spine concept is similar to a hub document developed for the MVD (Multivalent Document) archi-

tecture over a decade ago. MVD integrates document components of various types into one document by behaviors

called media adapters [5]. A principal purpose of the MVD architecture was to enable collaborative work on doc-

uments composed of distributed layers that may be under control of different authorities, with the excessive use of

J. Siciarek et al. / Procedia Computer Science 4 (2011) 668–677 675

3.93

Figure 5: Example use of the IODA executable paper demo

in situ annotations over multiple document formats. One of the challenges there was to develop robust anchoring

algorithms, that would maintain annotations of the upper layer reattached correctly despite alterations of the lower

layer. The difference between MVD and IODA is that the latter does not require developers to implement functionality

of media adapters as embedded behaviors and takes advantage of modern SOA paradigms by expanding document

functionality with local and external services executed outside of a document host computer. This reduces the size

and complexity of a multi-layered document, minimizes overhead on modifying document functionality upon adding

or removing components, and increases flexibility when its execution environment evolves because of releasing new

plugins or services that replace older versions specified by its spine component.

Instead of developing hard-wired media adapters proposed by MVD, IODA prefers a light-weight approach in-

volving “orchestration by example” of services registered in the document data layer in a simple three step procedure:

1. Upload the main paper with its attachments and register services in the data layer.

2. Interpret the paper content by naming and selecting objects to be associated with user events via <ioda:exec-spo

of the information layer.

3. Bind the executable document with <ioda:exec-sets> of the knowledge layer

676 J. Siciarek et al. / Procedia Computer Science 4 (2011) 668–677

An important point to grasp is that authors creating executable papers conforming to the proposed IODA model

may use exactly the same tools and resources when preparing results reported in the main paper submitted for publi-

cation. For some authors these may be individually developed pieces of code or some standard libraries, like common

Linpack [6] or GNU Scientific Library [7], or just a plain spreadsheet, while for others the case would be scripts

for some popular symbolic algebra execution tools, like Maple or Mathematica [8], or even unique languages for

simulation modeling like Acumen [9].

5. Conclusions

IODA addresses several important issues of the executable paper challenge:

• Executability of equations, tables, graphs, pieces of code, etc. is provided by authors interactively selecting

and interpreting objects. For simple interpretation patterns, e.g., a set of data associated with a formula in

some marked document fragment for which it calculates series of results, execution is straightforward. For

more complex patterns involving collections of marked document fragments, e.g. tables of data processed by

equations and resulting in a series of graphs and other tables, a dedicated service may be orchestrated using

registered services. By logging user actions in the knowledge layer all such experiments can be repeated and

manipulated.

• Short and long-term compatibility; content executability of the proposed model builds upon executable compo-

nents of Web browsers, making IODA documents compatible with the users operating systems and architectures,

as well as adaptable to future systems to the same extent as Web browsers could be.

• Validation; upon submitting an IODA paper, registration of certain specific services of its data layer may be

requested by the publisher. In consequence, reviewers may expect a substantial support from a document

information layer if set-up correctly by the author when validating results, both in numerical and graphical

form.

• Copyright and licensing; for particularly sensitive cases, when data or code reported in the paper constitute a

proprietary information, access for validation or exercising purposes by reviewers may be implemented as a

specialized external service. Data protection mechanisms there may involve a whole spectrum of user access

scenarios to Web services involving proprietary data: user authorization to use a particular service, calculation

of only general statistics for data hidden behind the service, data anonymization, digital watermarking, etc.

Code protection is even simpler, as it may be executed just as a service available only to authorized reviewers.

The cost would be additional effort by the author of a submitted paper to implement and make available the

respective service.

• Systems and size; to convey work done on large-scale computers, or with large data files, it will be strightforward

to request IODA external services from some cloud computing platform. The question is of course how large

should be the external computer (or data files attached to the submitted paper), compared to the user computer,

to necessitate implementing the service of a relevant document fragment as the external rather than a local one.

Given the increasing popularity of mobile personal devices, it is most likely that external services proposed

by IODA will evolve towards the emerging Desktop as a Service (DaaS) model of cloud computing. This

perspective would certainly be attractive to publishers and authors, who may profit from executable papers

providing specialized services for the wide scientific community and enabling interested viewers to exploit

results published in executable papers with their own data within the cloud computing business model.

• Provenance; registering and tracking of actions taken on the executable IODA paper is implemented at its

topmost knowledge layer with a standard Web server logging facility and is fairly simple.

• Other issues; Solutions to protect IODA documents from viruses and code contamination do not go beyond the

mechanisms incorporated by today or future browsers and Web services, as they are just XML trees specify-

ing services and tools of a document ecosystem that makes the main paper executable via common browsers.

Plagiarism can be handled by incorporating an optional functionality to a document fragment marked by the

J. Siciarek et al. / Procedia Computer Science 4 (2011) 668–677 677

reviewer, associating it with a content similarity analysis tool or service (provided or indicated by the pub-

lisher). Simple searches may include finding papers of the same author published before to verify originality of

the submitted paper under review, while more advanced may involve a range of techniques from substring or

keyword similarity matching, up to more recent near similarity search methods [10].

The light-weight approach advocated in the paper assumes the key role of human interaction with digital objects to

acquire and discover knowledge in a truly open distributed system, and to enable knowledge based organizations [11].

A prototype system for submitting IODA documents to a publisher is currently under implementation. It will

provide authors with the relevant layers building facility, in particular document marking and orchestrating registered

services to implement its desired functionality, and reviewers with annotating and exercising paper content.

References

[1] T. Phelps, R. Wilensky, Robust intra-document locations, Computer Networks 33 (1-6) (2000) 105–118.

[2] D. Bargeron, A. Bernheim Brush, A. Gupta, Robust anchoring of annotations to content, United States Patent Application 20060080598,

http://www.freepatentsonline.com/y2006/0080598.html (April 2006).

[3] I. Witten, D. Bainbridge, D. Nichols, How to Build a Digital Library, 2nd Edition, Morgan Kaufmann, Burlington, MA, 2010.

[4] J. Siciarek, B. Wiszniewski, How to become a millionaire with some math (an executable paper demo), http://ioda.siciarek.pl (2011).

[5] T. Phelps, R. Wilensky, Multivalent documents, Comm. ACM 43 (6) (2000) 83–90.

[6] J. Dongarra, G. Stewart, LINPACK Users’ Guide, Society for Industrial Mathematics, 1987.

[7] B. Gough (Ed.), GNU Scientific Library Reference Manual, 3rd Edition, Network Theory Ltd., 2009.

[8] I. Shingareva, C. Lizarraga-Celaya, Solving Nonlinear Partial Differential Equations with Maple and Mathematica, Springer, 2011.

[9] Y. Zhu, E. Westbrook, J. Inoue, A. Chapoutot, C. Salama, M. Peralta, T. Martin, W. Taha, M. O’Malley, R. Cartwright, A. Ames, R. Bhat-

tacharya, Mathematical equations as executable models of mechanical systems, in: Proceedings of the 1st ACM/IEEE International Confer-

ence on Cyber-Physical Systems, Stockholm, Sweden, ICCPS ’10, ACM, New York, NY, USA, 2010, pp. 1–11.

[10] B. Stein, S. Eissen, Near similarity search and plagiarism analysis, in: M. Spiliopoulou, R. Kruse, C. Borgelt, A. Nurnberger, W. Gaul (Eds.),

From Data and Information Analysis to Knowledge Engineering, Studies in Classification, Data Analysis, and Knowledge Organization,

Springer Berlin Heidelberg, 2006, pp. 430–437.

[11] M. Godlewska, B. Wiszniewski, Distributed MIND - a new processing model based on mobile interactive documents, in: R. Wyrzykowski,

J. Dongarra, K. Karczewski, J. Wasniewski (Eds.), Parallel Processing and Applied Mathematics, 8th Int. Conf., PPAM 2009, Wroclaw,

Poland, September 13-16, Vol. 6068 of Lecture Notes in Computer Science, Springer, 2010, pp. 244–249.

